Pulsed Interleaved Excitation Fluctuation Imaging

Fluorescence fluctuation imaging is a powerful means to investigate dynamics, interactions, and stoichiometry of proteins inside living cells. Pulsed interleaved excitation (PIE) is the method of nanosecond alternating excitation with time-resolved detection and allows accurate, independent, and qua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2013-08, Vol.105 (4), p.848-861
Hauptverfasser: Hendrix, Jelle, Schrimpf, Waldemar, Höller, Matthias, Lamb, Don C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fluorescence fluctuation imaging is a powerful means to investigate dynamics, interactions, and stoichiometry of proteins inside living cells. Pulsed interleaved excitation (PIE) is the method of nanosecond alternating excitation with time-resolved detection and allows accurate, independent, and quasi-simultaneous determination of fluorescence intensities and lifetimes of different fluorophores. In this work, we combine pulsed interleaved excitation with fluctuation imaging methods (PIE-FI) such as raster image correlation spectroscopy (RICS) or number and brightness analysis (N&B). More specifically, we show that quantitative measurements of diffusion and molecular brightness of Venus fluorescent protein (FP) can be performed in solution with PIE-RICS and compare PIE-RICS with single-point PIE-FCS measurements. We discuss the advantages of cross-talk free dual-color PIE-RICS and illustrate its proficiency by quantitatively comparing two commonly used FP pairs for dual-color microscopy, eGFP/mCherry and mVenus/mCherry. For N&B analysis, we implement dead-time correction to the PIE-FI data analysis to allow accurate molecular brightness determination with PIE-NB. We then use PIE-NB to investigate the effect of eGFP tandem oligomerization on the intracellular maturation efficiency of the fluorophore. Finally, we explore the possibilities of using the available fluorescence lifetime information in PIE-FI experiments. We perform lifetime-based weighting of confocal images, allowing us to quantitatively determine molecular concentrations from 100 nM down to
ISSN:0006-3495
1542-0086
DOI:10.1016/j.bpj.2013.05.059