Fluoxetine inhibited extracellular matrix of pulmonary artery and inflammation of lungs in monocrotaline-treated rats

Aim: To investigate the effects of the selective serotonin reuptake inhibitor (SSRI) fluoxetine on extracellular matrix (ECM) remodeling of the pulmonary artery and inflammation of the lungs in pulmonary arterial hypertension (PAH) induced by monocrotaline in rats. Methods: MCT-induced chronic PAH w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta pharmacologica Sinica 2011-02, Vol.32 (2), p.217-222
Hauptverfasser: Li, Xue-qin, Wang, Han-ming, Yang, Chun-guang, Zhang, Xin-hua, Han, Dan-dan, Wang, Huai-liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aim: To investigate the effects of the selective serotonin reuptake inhibitor (SSRI) fluoxetine on extracellular matrix (ECM) remodeling of the pulmonary artery and inflammation of the lungs in pulmonary arterial hypertension (PAH) induced by monocrotaline in rats. Methods: MCT-induced chronic PAH was established in Wistar rats. After treatment with fluoxetine for 3 weeks, pulmonary hemodynamic measurement and morphological investigation of lung tissues were undertaken. The main components of the ECM, elastin and collagen, were detected using Van Gieson stain and Orcein stain, respectively, or using Victoria-ponceau's double stain. The ECM proteolytic enzymes matrix metalloproteinase (MMP)-2 and MMP-9, and the tissue inhibitors of metalioproteinase (TIMP)-I and TIMP-2 were detected by Western blot. Inflammation of lung tissue was assayed using lung morphology and inflammatory cytokine expression Results: Fluoxetine (2 and 10 mg/kg) significantly inhibited MCT-induced PAH, attenuated pulmonary arterial muscularization and ECM remodeling, and decreased MMP/TIMP expression. Fluoxetine also suppressed inflammatory responses in lung tissue and inhibited the expression of the inflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), monocyte chemotactic protein (MCP-1) and intercellular adhesion molecule-1 (ICAM-1). Conclusion: Fluoxetine inhibited MCT-induced ECM remodeling of the pulmonary artery and inflammation of lung tissue. These effects were related to its inhibition on MMPs/TIMPs and cytokine productions.
ISSN:1671-4083
1745-7254
DOI:10.1038/aps.2010.187