The Period protein homolog LIN-42 negatively regulates microRNA biogenesis in C. elegans
MicroRNAs (miRNAs) are small RNAs that post-transcriptionally regulate gene expression in many multicellular organisms. They are encoded in the genome and transcribed into primary (pri-) miRNAs before two processing steps that ultimately produce the mature miRNA. In order to generate the appropriate...
Gespeichert in:
Veröffentlicht in: | Developmental biology 2014-06, Vol.390 (2), p.126-135 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | MicroRNAs (miRNAs) are small RNAs that post-transcriptionally regulate gene expression in many multicellular organisms. They are encoded in the genome and transcribed into primary (pri-) miRNAs before two processing steps that ultimately produce the mature miRNA. In order to generate the appropriate amount of a particular miRNA in the correct location at the correct time, proper regulation of miRNA biogenesis is essential. Here we identify the Period protein homolog LIN-42 as a new regulator of miRNA biogenesis in Caenorhabditis elegans. We mapped a spontaneous suppressor of the normally lethal let-7(n2853) allele to the lin-42 gene. Mutations in this allele (ap201) or a second lin-42 allele (n1089) caused increased mature let-7 miRNA levels at most time points when mature let-7 miRNA is normally expressed. Levels of pri-let-7 and a let-7 transcriptional reporter were also increased in lin-42(n1089) worms. These results indicate that LIN-42 normally represses pri-let-7 transcription and thus the accumulation of let-7 miRNA. This inhibition is not specific to let-7, as pri- and mature levels of lin-4 and miR-35 were also increased in lin-42 mutants. Furthermore, small RNA-seq analysis showed widespread increases in the levels of mature miRNAs in lin-42 mutants. Thus, we propose that the period protein homolog LIN-42 is a global regulator of miRNA biogenesis.
•lin-42 mutation causes increased let-7 levels and decreased let-7 target levels.•LIN-42 inhibits pri-let-7 transcription to ultimately impact let-7 levels.•95% of embryonic miRNAs exhibit increased expression in lin-42 mutants.•33% of 4th larval stage miRNAs exhibit increased expression in lin-42 mutants.•Suggests Period proteins regulate miRNAs to impact rhythmic processes. |
---|---|
ISSN: | 0012-1606 1095-564X |
DOI: | 10.1016/j.ydbio.2014.03.017 |