PKA-Mediated Phosphorylation of ATR Promotes Recruitment of XPA to UV-Induced DNA Damage
The melanocortin 1 receptor (MC1R), which signals through cAMP, is a melanocytic transmembrane receptor involved in pigmentation, adaptive tanning, and melanoma resistance. We report MC1R-mediated or pharmacologically-induced cAMP signaling promotes nucleotide excision repair (NER) in a cAMP-depende...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2014-06, Vol.54 (6), p.999-1011 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The melanocortin 1 receptor (MC1R), which signals through cAMP, is a melanocytic transmembrane receptor involved in pigmentation, adaptive tanning, and melanoma resistance. We report MC1R-mediated or pharmacologically-induced cAMP signaling promotes nucleotide excision repair (NER) in a cAMP-dependent protein kinase A (PKA)-dependent manner. PKA directly phosphorylates ataxia telangiectasia and Rad3-related protein (ATR) at Ser435, which actively recruits the key NER protein xeroderma pigmentosum complementation group A (XPA) to sites of nuclear UV photodamage, accelerating clearance of UV-induced photolesions and reducing mutagenesis. Loss of Ser435 within ATR prevents PKA-mediated ATR phosphorylation, disrupts ATR-XPA binding, delays recruitment of XPA to UV-damaged DNA, and elevates UV-induced mutagenesis. This study mechanistically links cAMP-PKA signaling to NER and illustrates potential benefits of cAMP pharmacological rescue to reduce UV mutagenesis in MC1R-defective, melanoma-susceptible individuals. |
---|---|
ISSN: | 1097-2765 1097-4164 |
DOI: | 10.1016/j.molcel.2014.05.030 |