BCL2 suppresses PARP1 function and non-apoptotic cell death
BCL2 suppresses apoptosis by binding the BH3 domain of pro-apoptotic factors and thereby regulating outer mitochondrial membrane permeabilization. Many tumor types, including B-cell lymphomas and chronic lymphocytic leukemia, are dependent on BCL2 for survival, but become resistant to apoptosis afte...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2012-06, Vol.72 (16), p.4193-4203 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BCL2 suppresses apoptosis by binding the BH3 domain of pro-apoptotic factors and thereby regulating outer mitochondrial membrane permeabilization. Many tumor types, including B-cell lymphomas and chronic lymphocytic leukemia, are dependent on BCL2 for survival, but become resistant to apoptosis after treatment. Here we identified a direct interaction between the anti-apoptotic protein BCL2 and the enzyme poly(ADP) ribose polymerase 1 (PARP1), which suppresses PARP1 enzymatic activity and inhibits PARP1-dependent DNA repair in diffuse large B cell lymphoma cells. The BH3 mimetic ABT-737 displaced PARP1 from BCL2 in a dose-dependent manner, re-establishing PARP1 activity and DNA repair and promoting non-apoptotic cell death. This form of cell death was unaffected by resistance to single-agent ABT-737 that results from upregulation of anti-apoptotic BCL2 family members. Based on the ability of BCL2 to suppress PARP1 function, we hypothesized that ectopic BCL2 expression would kill PARP inhibitor-sensitive cells. Strikingly, BCL2 expression reduced the survival of PARP inhibitor-sensitive breast cancer and lung cancer cells by 90-100%, and these effects were reversed by ABT-737. Taken together, our findings demonstrate that a novel interaction between BCL2 and PARP1 blocks PARP1 enzymatic activity and suppresses PARP1-dependent repair. Targeted disruption of the BCL2-PARP1 interaction therefore may represent a potential therapeutic approach for BCL2-expressing tumors resistant to apoptosis. |
---|---|
ISSN: | 0008-5472 1538-7445 |
DOI: | 10.1158/0008-5472.CAN-11-4204 |