Space–time wiring specificity supports direction selectivity in the retina

How does the mammalian retina detect motion? This classic problem in visual neuroscience has remained unsolved for 50 years. In search of clues, here we reconstruct Off-type starburst amacrine cells (SACs) and bipolar cells (BCs) in serial electron microscopic images with help from EyeWire, an onlin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2014-05, Vol.509 (7500), p.331-336
Hauptverfasser: Kim, Jinseop S., Greene, Matthew J., Zlateski, Aleksandar, Lee, Kisuk, Richardson, Mark, Turaga, Srinivas C., Purcaro, Michael, Balkam, Matthew, Robinson, Amy, Behabadi, Bardia F., Campos, Michael, Denk, Winfried, Seung, H. Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 336
container_issue 7500
container_start_page 331
container_title Nature (London)
container_volume 509
creator Kim, Jinseop S.
Greene, Matthew J.
Zlateski, Aleksandar
Lee, Kisuk
Richardson, Mark
Turaga, Srinivas C.
Purcaro, Michael
Balkam, Matthew
Robinson, Amy
Behabadi, Bardia F.
Campos, Michael
Denk, Winfried
Seung, H. Sebastian
description How does the mammalian retina detect motion? This classic problem in visual neuroscience has remained unsolved for 50 years. In search of clues, here we reconstruct Off-type starburst amacrine cells (SACs) and bipolar cells (BCs) in serial electron microscopic images with help from EyeWire, an online community of ‘citizen neuroscientists’. On the basis of quantitative analyses of contact area and branch depth in the retina, we find evidence that one BC type prefers to wire with a SAC dendrite near the SAC soma, whereas another BC type prefers to wire far from the soma. The near type is known to lag the far type in time of visual response. A mathematical model shows how such ‘space–time wiring specificity’ could endow SAC dendrites with receptive fields that are oriented in space–time and therefore respond selectively to stimuli that move in the outward direction from the soma. Motion detection by the retina is thought to rely largely on the biophysics of starburst amacrine cell dendrites; here machine learning is used with gamified crowdsourcing to draw the wiring diagram involving amacrine and bipolar cells to identify a plausible circuit mechanism for direction selectivity; the model suggests similarities between mammalian and insect vision. The retina's sense of direction Motion detection by the mammalian retina has been thought to rely largely on the intrinsic biophysics of the dendrites of starburst amacrine cells (SACs). Now Sebastian Seung and colleagues have combined new machine-learning techniques with crowd sourcing via the EyeWire brain-mapping game to redraw the wiring diagram for amacrine cells and bipolar cells. Their results show that direction selectivity is established at the presynaptic level — in the spatiotemporal inputs to the amacrine cells — identifying neural circuits rather than intrinsic properties of SACs as the key to direction selectivity. This new model brings the mouse retina closer in certain respects to the Reichardt motion detector characteristic of insect vision.
doi_str_mv 10.1038/nature13240
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4074887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A368472737</galeid><sourcerecordid>A368472737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c678t-e2879d11ff061f17893a87aae4b98cf3e7d448110adff250cfdb3f3798f8f5c93</originalsourceid><addsrcrecordid>eNptkl9v1SAYxhujcWfTK-9Nozcz2gmFFnpjsiz-WXISE6fXhENfOpYWOqDT3fkd_IZ-EmnOnOeYhgsI74_ngZcny55hdIIR4W-tjJMHTEqKHmQrTFld0Jqzh9kKoZIXiJP6IDsM4QohVGFGH2cHJeWoKilZZeuLUSr4_fNXNAPk3403tsvDCMpoo0y8zcM0js7HkLfGg4rG2TxAP69u5rKxebyE3EM0Vj7JHmnZB3h6Nx9l3z68_3r2qVh__nh-drouVM14LKDkrGkx1hrVWGPGGyI5kxLopuFKE2AtpRxjJFutywop3W6IJqzhmutKNeQoe7fVHafNAK0CG73sxejNIP2tcNKI_Yo1l6JzN4IiRjlnSeD4TsC76wlCFIMJCvpeWnBTELgqK1bXFM9eL_9Dr9zkbXpeokhV1gxT-o_qZA_CWO2Sr5pFxSmpOWUlI7NtsUB1YCFd0lnQJm3v8S8WeDWaa7ELnSxAabQwGLWo-mrvQGIi_IidnEIQ5xdf9tnXW1Z5F4IHfd9kjMScPrGTvkQ_3_2Xe_Zv3BLwZguEcQ4a-J1mLuj9AWaJ5D0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1535267144</pqid></control><display><type>article</type><title>Space–time wiring specificity supports direction selectivity in the retina</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kim, Jinseop S. ; Greene, Matthew J. ; Zlateski, Aleksandar ; Lee, Kisuk ; Richardson, Mark ; Turaga, Srinivas C. ; Purcaro, Michael ; Balkam, Matthew ; Robinson, Amy ; Behabadi, Bardia F. ; Campos, Michael ; Denk, Winfried ; Seung, H. Sebastian</creator><creatorcontrib>Kim, Jinseop S. ; Greene, Matthew J. ; Zlateski, Aleksandar ; Lee, Kisuk ; Richardson, Mark ; Turaga, Srinivas C. ; Purcaro, Michael ; Balkam, Matthew ; Robinson, Amy ; Behabadi, Bardia F. ; Campos, Michael ; Denk, Winfried ; Seung, H. Sebastian ; EyeWirers ; the EyeWirers</creatorcontrib><description>How does the mammalian retina detect motion? This classic problem in visual neuroscience has remained unsolved for 50 years. In search of clues, here we reconstruct Off-type starburst amacrine cells (SACs) and bipolar cells (BCs) in serial electron microscopic images with help from EyeWire, an online community of ‘citizen neuroscientists’. On the basis of quantitative analyses of contact area and branch depth in the retina, we find evidence that one BC type prefers to wire with a SAC dendrite near the SAC soma, whereas another BC type prefers to wire far from the soma. The near type is known to lag the far type in time of visual response. A mathematical model shows how such ‘space–time wiring specificity’ could endow SAC dendrites with receptive fields that are oriented in space–time and therefore respond selectively to stimuli that move in the outward direction from the soma. Motion detection by the retina is thought to rely largely on the biophysics of starburst amacrine cell dendrites; here machine learning is used with gamified crowdsourcing to draw the wiring diagram involving amacrine and bipolar cells to identify a plausible circuit mechanism for direction selectivity; the model suggests similarities between mammalian and insect vision. The retina's sense of direction Motion detection by the mammalian retina has been thought to rely largely on the intrinsic biophysics of the dendrites of starburst amacrine cells (SACs). Now Sebastian Seung and colleagues have combined new machine-learning techniques with crowd sourcing via the EyeWire brain-mapping game to redraw the wiring diagram for amacrine cells and bipolar cells. Their results show that direction selectivity is established at the presynaptic level — in the spatiotemporal inputs to the amacrine cells — identifying neural circuits rather than intrinsic properties of SACs as the key to direction selectivity. This new model brings the mouse retina closer in certain respects to the Reichardt motion detector characteristic of insect vision.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature13240</identifier><identifier>PMID: 24805243</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 14/28 ; 631/378/2613/1786 ; Accuracy ; Amacrine Cells - cytology ; Amacrine Cells - physiology ; Amacrine Cells - ultrastructure ; Animals ; Artificial Intelligence ; Brain Mapping ; Brain research ; Brain stimulation ; Crowdsourcing ; Dendrites ; Dendrites - metabolism ; Humanities and Social Sciences ; Mice ; Models, Neurological ; Motion ; multidisciplinary ; Neural circuitry ; Neural Pathways - physiology ; Neurology ; Neurons ; Physiological aspects ; Presynaptic Terminals - metabolism ; Retina ; Retina - cytology ; Retina - physiology ; Retinal Bipolar Cells - cytology ; Retinal Bipolar Cells - physiology ; Retinal Bipolar Cells - ultrastructure ; Science ; Spatio-Temporal Analysis</subject><ispartof>Nature (London), 2014-05, Vol.509 (7500), p.331-336</ispartof><rights>Springer Nature Limited 2014</rights><rights>COPYRIGHT 2014 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group May 15, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c678t-e2879d11ff061f17893a87aae4b98cf3e7d448110adff250cfdb3f3798f8f5c93</citedby><cites>FETCH-LOGICAL-c678t-e2879d11ff061f17893a87aae4b98cf3e7d448110adff250cfdb3f3798f8f5c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature13240$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature13240$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24805243$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Jinseop S.</creatorcontrib><creatorcontrib>Greene, Matthew J.</creatorcontrib><creatorcontrib>Zlateski, Aleksandar</creatorcontrib><creatorcontrib>Lee, Kisuk</creatorcontrib><creatorcontrib>Richardson, Mark</creatorcontrib><creatorcontrib>Turaga, Srinivas C.</creatorcontrib><creatorcontrib>Purcaro, Michael</creatorcontrib><creatorcontrib>Balkam, Matthew</creatorcontrib><creatorcontrib>Robinson, Amy</creatorcontrib><creatorcontrib>Behabadi, Bardia F.</creatorcontrib><creatorcontrib>Campos, Michael</creatorcontrib><creatorcontrib>Denk, Winfried</creatorcontrib><creatorcontrib>Seung, H. Sebastian</creatorcontrib><creatorcontrib>EyeWirers</creatorcontrib><creatorcontrib>the EyeWirers</creatorcontrib><title>Space–time wiring specificity supports direction selectivity in the retina</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>How does the mammalian retina detect motion? This classic problem in visual neuroscience has remained unsolved for 50 years. In search of clues, here we reconstruct Off-type starburst amacrine cells (SACs) and bipolar cells (BCs) in serial electron microscopic images with help from EyeWire, an online community of ‘citizen neuroscientists’. On the basis of quantitative analyses of contact area and branch depth in the retina, we find evidence that one BC type prefers to wire with a SAC dendrite near the SAC soma, whereas another BC type prefers to wire far from the soma. The near type is known to lag the far type in time of visual response. A mathematical model shows how such ‘space–time wiring specificity’ could endow SAC dendrites with receptive fields that are oriented in space–time and therefore respond selectively to stimuli that move in the outward direction from the soma. Motion detection by the retina is thought to rely largely on the biophysics of starburst amacrine cell dendrites; here machine learning is used with gamified crowdsourcing to draw the wiring diagram involving amacrine and bipolar cells to identify a plausible circuit mechanism for direction selectivity; the model suggests similarities between mammalian and insect vision. The retina's sense of direction Motion detection by the mammalian retina has been thought to rely largely on the intrinsic biophysics of the dendrites of starburst amacrine cells (SACs). Now Sebastian Seung and colleagues have combined new machine-learning techniques with crowd sourcing via the EyeWire brain-mapping game to redraw the wiring diagram for amacrine cells and bipolar cells. Their results show that direction selectivity is established at the presynaptic level — in the spatiotemporal inputs to the amacrine cells — identifying neural circuits rather than intrinsic properties of SACs as the key to direction selectivity. This new model brings the mouse retina closer in certain respects to the Reichardt motion detector characteristic of insect vision.</description><subject>14</subject><subject>14/28</subject><subject>631/378/2613/1786</subject><subject>Accuracy</subject><subject>Amacrine Cells - cytology</subject><subject>Amacrine Cells - physiology</subject><subject>Amacrine Cells - ultrastructure</subject><subject>Animals</subject><subject>Artificial Intelligence</subject><subject>Brain Mapping</subject><subject>Brain research</subject><subject>Brain stimulation</subject><subject>Crowdsourcing</subject><subject>Dendrites</subject><subject>Dendrites - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Mice</subject><subject>Models, Neurological</subject><subject>Motion</subject><subject>multidisciplinary</subject><subject>Neural circuitry</subject><subject>Neural Pathways - physiology</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Physiological aspects</subject><subject>Presynaptic Terminals - metabolism</subject><subject>Retina</subject><subject>Retina - cytology</subject><subject>Retina - physiology</subject><subject>Retinal Bipolar Cells - cytology</subject><subject>Retinal Bipolar Cells - physiology</subject><subject>Retinal Bipolar Cells - ultrastructure</subject><subject>Science</subject><subject>Spatio-Temporal Analysis</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkl9v1SAYxhujcWfTK-9Nozcz2gmFFnpjsiz-WXISE6fXhENfOpYWOqDT3fkd_IZ-EmnOnOeYhgsI74_ngZcny55hdIIR4W-tjJMHTEqKHmQrTFld0Jqzh9kKoZIXiJP6IDsM4QohVGFGH2cHJeWoKilZZeuLUSr4_fNXNAPk3403tsvDCMpoo0y8zcM0js7HkLfGg4rG2TxAP69u5rKxebyE3EM0Vj7JHmnZB3h6Nx9l3z68_3r2qVh__nh-drouVM14LKDkrGkx1hrVWGPGGyI5kxLopuFKE2AtpRxjJFutywop3W6IJqzhmutKNeQoe7fVHafNAK0CG73sxejNIP2tcNKI_Yo1l6JzN4IiRjlnSeD4TsC76wlCFIMJCvpeWnBTELgqK1bXFM9eL_9Dr9zkbXpeokhV1gxT-o_qZA_CWO2Sr5pFxSmpOWUlI7NtsUB1YCFd0lnQJm3v8S8WeDWaa7ELnSxAabQwGLWo-mrvQGIi_IidnEIQ5xdf9tnXW1Z5F4IHfd9kjMScPrGTvkQ_3_2Xe_Zv3BLwZguEcQ4a-J1mLuj9AWaJ5D0</recordid><startdate>20140515</startdate><enddate>20140515</enddate><creator>Kim, Jinseop S.</creator><creator>Greene, Matthew J.</creator><creator>Zlateski, Aleksandar</creator><creator>Lee, Kisuk</creator><creator>Richardson, Mark</creator><creator>Turaga, Srinivas C.</creator><creator>Purcaro, Michael</creator><creator>Balkam, Matthew</creator><creator>Robinson, Amy</creator><creator>Behabadi, Bardia F.</creator><creator>Campos, Michael</creator><creator>Denk, Winfried</creator><creator>Seung, H. Sebastian</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140515</creationdate><title>Space–time wiring specificity supports direction selectivity in the retina</title><author>Kim, Jinseop S. ; Greene, Matthew J. ; Zlateski, Aleksandar ; Lee, Kisuk ; Richardson, Mark ; Turaga, Srinivas C. ; Purcaro, Michael ; Balkam, Matthew ; Robinson, Amy ; Behabadi, Bardia F. ; Campos, Michael ; Denk, Winfried ; Seung, H. Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c678t-e2879d11ff061f17893a87aae4b98cf3e7d448110adff250cfdb3f3798f8f5c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>14</topic><topic>14/28</topic><topic>631/378/2613/1786</topic><topic>Accuracy</topic><topic>Amacrine Cells - cytology</topic><topic>Amacrine Cells - physiology</topic><topic>Amacrine Cells - ultrastructure</topic><topic>Animals</topic><topic>Artificial Intelligence</topic><topic>Brain Mapping</topic><topic>Brain research</topic><topic>Brain stimulation</topic><topic>Crowdsourcing</topic><topic>Dendrites</topic><topic>Dendrites - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Mice</topic><topic>Models, Neurological</topic><topic>Motion</topic><topic>multidisciplinary</topic><topic>Neural circuitry</topic><topic>Neural Pathways - physiology</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Physiological aspects</topic><topic>Presynaptic Terminals - metabolism</topic><topic>Retina</topic><topic>Retina - cytology</topic><topic>Retina - physiology</topic><topic>Retinal Bipolar Cells - cytology</topic><topic>Retinal Bipolar Cells - physiology</topic><topic>Retinal Bipolar Cells - ultrastructure</topic><topic>Science</topic><topic>Spatio-Temporal Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jinseop S.</creatorcontrib><creatorcontrib>Greene, Matthew J.</creatorcontrib><creatorcontrib>Zlateski, Aleksandar</creatorcontrib><creatorcontrib>Lee, Kisuk</creatorcontrib><creatorcontrib>Richardson, Mark</creatorcontrib><creatorcontrib>Turaga, Srinivas C.</creatorcontrib><creatorcontrib>Purcaro, Michael</creatorcontrib><creatorcontrib>Balkam, Matthew</creatorcontrib><creatorcontrib>Robinson, Amy</creatorcontrib><creatorcontrib>Behabadi, Bardia F.</creatorcontrib><creatorcontrib>Campos, Michael</creatorcontrib><creatorcontrib>Denk, Winfried</creatorcontrib><creatorcontrib>Seung, H. Sebastian</creatorcontrib><creatorcontrib>EyeWirers</creatorcontrib><creatorcontrib>the EyeWirers</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jinseop S.</au><au>Greene, Matthew J.</au><au>Zlateski, Aleksandar</au><au>Lee, Kisuk</au><au>Richardson, Mark</au><au>Turaga, Srinivas C.</au><au>Purcaro, Michael</au><au>Balkam, Matthew</au><au>Robinson, Amy</au><au>Behabadi, Bardia F.</au><au>Campos, Michael</au><au>Denk, Winfried</au><au>Seung, H. Sebastian</au><aucorp>EyeWirers</aucorp><aucorp>the EyeWirers</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Space–time wiring specificity supports direction selectivity in the retina</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2014-05-15</date><risdate>2014</risdate><volume>509</volume><issue>7500</issue><spage>331</spage><epage>336</epage><pages>331-336</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>How does the mammalian retina detect motion? This classic problem in visual neuroscience has remained unsolved for 50 years. In search of clues, here we reconstruct Off-type starburst amacrine cells (SACs) and bipolar cells (BCs) in serial electron microscopic images with help from EyeWire, an online community of ‘citizen neuroscientists’. On the basis of quantitative analyses of contact area and branch depth in the retina, we find evidence that one BC type prefers to wire with a SAC dendrite near the SAC soma, whereas another BC type prefers to wire far from the soma. The near type is known to lag the far type in time of visual response. A mathematical model shows how such ‘space–time wiring specificity’ could endow SAC dendrites with receptive fields that are oriented in space–time and therefore respond selectively to stimuli that move in the outward direction from the soma. Motion detection by the retina is thought to rely largely on the biophysics of starburst amacrine cell dendrites; here machine learning is used with gamified crowdsourcing to draw the wiring diagram involving amacrine and bipolar cells to identify a plausible circuit mechanism for direction selectivity; the model suggests similarities between mammalian and insect vision. The retina's sense of direction Motion detection by the mammalian retina has been thought to rely largely on the intrinsic biophysics of the dendrites of starburst amacrine cells (SACs). Now Sebastian Seung and colleagues have combined new machine-learning techniques with crowd sourcing via the EyeWire brain-mapping game to redraw the wiring diagram for amacrine cells and bipolar cells. Their results show that direction selectivity is established at the presynaptic level — in the spatiotemporal inputs to the amacrine cells — identifying neural circuits rather than intrinsic properties of SACs as the key to direction selectivity. This new model brings the mouse retina closer in certain respects to the Reichardt motion detector characteristic of insect vision.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24805243</pmid><doi>10.1038/nature13240</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2014-05, Vol.509 (7500), p.331-336
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4074887
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 14
14/28
631/378/2613/1786
Accuracy
Amacrine Cells - cytology
Amacrine Cells - physiology
Amacrine Cells - ultrastructure
Animals
Artificial Intelligence
Brain Mapping
Brain research
Brain stimulation
Crowdsourcing
Dendrites
Dendrites - metabolism
Humanities and Social Sciences
Mice
Models, Neurological
Motion
multidisciplinary
Neural circuitry
Neural Pathways - physiology
Neurology
Neurons
Physiological aspects
Presynaptic Terminals - metabolism
Retina
Retina - cytology
Retina - physiology
Retinal Bipolar Cells - cytology
Retinal Bipolar Cells - physiology
Retinal Bipolar Cells - ultrastructure
Science
Spatio-Temporal Analysis
title Space–time wiring specificity supports direction selectivity in the retina
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A58%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Space%E2%80%93time%20wiring%20specificity%20supports%20direction%20selectivity%20in%20the%20retina&rft.jtitle=Nature%20(London)&rft.au=Kim,%20Jinseop%20S.&rft.aucorp=EyeWirers&rft.date=2014-05-15&rft.volume=509&rft.issue=7500&rft.spage=331&rft.epage=336&rft.pages=331-336&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature13240&rft_dat=%3Cgale_pubme%3EA368472737%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1535267144&rft_id=info:pmid/24805243&rft_galeid=A368472737&rfr_iscdi=true