Space–time wiring specificity supports direction selectivity in the retina

How does the mammalian retina detect motion? This classic problem in visual neuroscience has remained unsolved for 50 years. In search of clues, here we reconstruct Off-type starburst amacrine cells (SACs) and bipolar cells (BCs) in serial electron microscopic images with help from EyeWire, an onlin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2014-05, Vol.509 (7500), p.331-336
Hauptverfasser: Kim, Jinseop S., Greene, Matthew J., Zlateski, Aleksandar, Lee, Kisuk, Richardson, Mark, Turaga, Srinivas C., Purcaro, Michael, Balkam, Matthew, Robinson, Amy, Behabadi, Bardia F., Campos, Michael, Denk, Winfried, Seung, H. Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:How does the mammalian retina detect motion? This classic problem in visual neuroscience has remained unsolved for 50 years. In search of clues, here we reconstruct Off-type starburst amacrine cells (SACs) and bipolar cells (BCs) in serial electron microscopic images with help from EyeWire, an online community of ‘citizen neuroscientists’. On the basis of quantitative analyses of contact area and branch depth in the retina, we find evidence that one BC type prefers to wire with a SAC dendrite near the SAC soma, whereas another BC type prefers to wire far from the soma. The near type is known to lag the far type in time of visual response. A mathematical model shows how such ‘space–time wiring specificity’ could endow SAC dendrites with receptive fields that are oriented in space–time and therefore respond selectively to stimuli that move in the outward direction from the soma. Motion detection by the retina is thought to rely largely on the biophysics of starburst amacrine cell dendrites; here machine learning is used with gamified crowdsourcing to draw the wiring diagram involving amacrine and bipolar cells to identify a plausible circuit mechanism for direction selectivity; the model suggests similarities between mammalian and insect vision. The retina's sense of direction Motion detection by the mammalian retina has been thought to rely largely on the intrinsic biophysics of the dendrites of starburst amacrine cells (SACs). Now Sebastian Seung and colleagues have combined new machine-learning techniques with crowd sourcing via the EyeWire brain-mapping game to redraw the wiring diagram for amacrine cells and bipolar cells. Their results show that direction selectivity is established at the presynaptic level — in the spatiotemporal inputs to the amacrine cells — identifying neural circuits rather than intrinsic properties of SACs as the key to direction selectivity. This new model brings the mouse retina closer in certain respects to the Reichardt motion detector characteristic of insect vision.
ISSN:0028-0836
1476-4687
DOI:10.1038/nature13240