QTL mapping in outbred populations: successes and challenges
Quantitative trait locus (QTL) mapping in animal populations has been a successful strategy for identifying genomic regions that play a role in complex diseases and traits. When conducted in an F2 intercross or backcross population, the resulting QTL is frequently large, often encompassing 30 Mb or...
Gespeichert in:
Veröffentlicht in: | Physiological genomics 2014-02, Vol.46 (3), p.81-90 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantitative trait locus (QTL) mapping in animal populations has been a successful strategy for identifying genomic regions that play a role in complex diseases and traits. When conducted in an F2 intercross or backcross population, the resulting QTL is frequently large, often encompassing 30 Mb or more and containing hundreds of genes. To narrow the locus and identify candidate genes, additional strategies are needed. Congenic strains have proven useful but work less well when there are multiple tightly linked loci, frequently resulting in loss of phenotype. As an alternative, we discuss the use of highly recombinant outbred models for directly fine-mapping QTL to only a few megabases. We discuss the use of several currently available models such as the advanced intercross (AI), heterogeneous stocks (HS), the diversity outbred (DO), and commercially available outbred stocks (CO). Once a QTL has been fine-mapped, founder sequence and expression QTL mapping can be used to identify candidate genes. In this regard, the large number of alleles found in outbred stocks can be leveraged to identify causative genes and variants. We end this review by discussing some important statistical considerations when analyzing outbred populations. Fine-resolution mapping in outbred models, coupled with full genome sequence, has already led to the identification of several underlying causative genes for many complex traits and diseases. These resources will likely lead to additional successes in the coming years. |
---|---|
ISSN: | 1094-8341 1531-2267 |
DOI: | 10.1152/physiolgenomics.00127.2013 |