Identification of miRNAs Expression Profile in Gastric Cancer Using Self-Organizing Maps (SOM)
In this paper, an unsupervised artificial neural network was implemented to identify the patters of specific signatures. The network was based on the differential expression of miRNAs (under or over expression) found in healthy or cancerous gastric tissues. Among the tissues analyzes, the neural net...
Gespeichert in:
Veröffentlicht in: | Bioinformation 2014-01, Vol.10 (5), p.246-250 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 250 |
---|---|
container_issue | 5 |
container_start_page | 246 |
container_title | Bioinformation |
container_volume | 10 |
creator | Gomes, Larissa Luz Moreira, Fabiano Cordeiro Hamoy, Igor Guerreiro Santos, Sidney Assumpção, Paulo Santana, Adamo L Ribeiro-Dos-Santos, Andrea |
description | In this paper, an unsupervised artificial neural network was implemented to identify the patters of specific signatures. The network was based on the differential expression of miRNAs (under or over expression) found in healthy or cancerous gastric tissues. Among the tissues analyzes, the neural network evaluated 514 miRNAs of gastric tissue that exhibited significant differential expression. The result suggested a specific expression signature nine miRNAs (hsa-mir-21, hsa-mir-29a, hsa-mir-29c, hsa-mir-148a, hsa-mir-141, hsa-let-7b, hsa-mir-31, hsa-mir-451, and hsa-mir-192), all with significant values (p-value < 0.01 and fold change > 5) that clustered the samples into two groups: healthy tissue and gastric cancer tissue. The results obtained "in silico" must be validated in a molecular biology laboratory; if confirmed, this method may be used in the future as a risk marker for gastric cancer development. |
doi_str_mv | 10.6026/97320630010246 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4070031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1635026542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-5bb3d4a4648246f33181145e942150b81887556fce9836986c21f2402b4b7773</originalsourceid><addsrcrecordid>eNqFUbtOAzEQtBCIR6ClRC6hOPDbdw0SigJESgji0WL5HDsY3SPYFwR8PXdKiEhF5fXs7GhnB4BjjM4FIuIik5QgQRHCiDCxBfZRiyQdtP2n3gMHMb4hxLCUfBfsEZYJwUm2D16GU1s13nmjG19XsHaw9A93VxEOPufBxtiB96F2vrDQV_BGxyZ4A_u6MjbA5-irGXy0hUsmYaYr_939x3oe4enjZHx2CHacLqI9Wr098HQ9eOrfJqPJzbB_NUoM5bRJeJ7TKdNMsLR14SjFKcaM24wRzFGe4jSVnAtnbJZSkaXCEOwIQyRnuZSS9sDlUna-yEs7Na2loAs1D77U4UvV2qvNTuVf1az-UAxJhChuBU5XAqF-X9jYqNJHY4tCV7ZeRIUF5e25OSP_UznDVOKMsJZ6vqSaUMcYrFtvhJHq4lOb8bUDJ399rOm_edEfk8iSvw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1541371924</pqid></control><display><type>article</type><title>Identification of miRNAs Expression Profile in Gastric Cancer Using Self-Organizing Maps (SOM)</title><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Gomes, Larissa Luz ; Moreira, Fabiano Cordeiro ; Hamoy, Igor Guerreiro ; Santos, Sidney ; Assumpção, Paulo ; Santana, Adamo L ; Ribeiro-Dos-Santos, Andrea</creator><creatorcontrib>Gomes, Larissa Luz ; Moreira, Fabiano Cordeiro ; Hamoy, Igor Guerreiro ; Santos, Sidney ; Assumpção, Paulo ; Santana, Adamo L ; Ribeiro-Dos-Santos, Andrea ; Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém, Pará, Brasil; Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém, Pará, Brasil</creatorcontrib><description>In this paper, an unsupervised artificial neural network was implemented to identify the patters of specific signatures. The network was based on the differential expression of miRNAs (under or over expression) found in healthy or cancerous gastric tissues. Among the tissues analyzes, the neural network evaluated 514 miRNAs of gastric tissue that exhibited significant differential expression. The result suggested a specific expression signature nine miRNAs (hsa-mir-21, hsa-mir-29a, hsa-mir-29c, hsa-mir-148a, hsa-mir-141, hsa-let-7b, hsa-mir-31, hsa-mir-451, and hsa-mir-192), all with significant values (p-value < 0.01 and fold change > 5) that clustered the samples into two groups: healthy tissue and gastric cancer tissue. The results obtained "in silico" must be validated in a molecular biology laboratory; if confirmed, this method may be used in the future as a risk marker for gastric cancer development.</description><identifier>ISSN: 0973-2063</identifier><identifier>ISSN: 0973-8894</identifier><identifier>EISSN: 0973-2063</identifier><identifier>EISSN: 0973-8894</identifier><identifier>DOI: 10.6026/97320630010246</identifier><identifier>PMID: 24966529</identifier><language>eng</language><publisher>Singapore: Biomedical Informatics</publisher><subject>Hypothesis</subject><ispartof>Bioinformation, 2014-01, Vol.10 (5), p.246-250</ispartof><rights>2014 Biomedical Informatics 2014</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-5bb3d4a4648246f33181145e942150b81887556fce9836986c21f2402b4b7773</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070031/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070031/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24966529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gomes, Larissa Luz</creatorcontrib><creatorcontrib>Moreira, Fabiano Cordeiro</creatorcontrib><creatorcontrib>Hamoy, Igor Guerreiro</creatorcontrib><creatorcontrib>Santos, Sidney</creatorcontrib><creatorcontrib>Assumpção, Paulo</creatorcontrib><creatorcontrib>Santana, Adamo L</creatorcontrib><creatorcontrib>Ribeiro-Dos-Santos, Andrea</creatorcontrib><creatorcontrib>Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém, Pará, Brasil; Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém, Pará, Brasil</creatorcontrib><title>Identification of miRNAs Expression Profile in Gastric Cancer Using Self-Organizing Maps (SOM)</title><title>Bioinformation</title><addtitle>Bioinformation</addtitle><description>In this paper, an unsupervised artificial neural network was implemented to identify the patters of specific signatures. The network was based on the differential expression of miRNAs (under or over expression) found in healthy or cancerous gastric tissues. Among the tissues analyzes, the neural network evaluated 514 miRNAs of gastric tissue that exhibited significant differential expression. The result suggested a specific expression signature nine miRNAs (hsa-mir-21, hsa-mir-29a, hsa-mir-29c, hsa-mir-148a, hsa-mir-141, hsa-let-7b, hsa-mir-31, hsa-mir-451, and hsa-mir-192), all with significant values (p-value < 0.01 and fold change > 5) that clustered the samples into two groups: healthy tissue and gastric cancer tissue. The results obtained "in silico" must be validated in a molecular biology laboratory; if confirmed, this method may be used in the future as a risk marker for gastric cancer development.</description><subject>Hypothesis</subject><issn>0973-2063</issn><issn>0973-8894</issn><issn>0973-2063</issn><issn>0973-8894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFUbtOAzEQtBCIR6ClRC6hOPDbdw0SigJESgji0WL5HDsY3SPYFwR8PXdKiEhF5fXs7GhnB4BjjM4FIuIik5QgQRHCiDCxBfZRiyQdtP2n3gMHMb4hxLCUfBfsEZYJwUm2D16GU1s13nmjG19XsHaw9A93VxEOPufBxtiB96F2vrDQV_BGxyZ4A_u6MjbA5-irGXy0hUsmYaYr_939x3oe4enjZHx2CHacLqI9Wr098HQ9eOrfJqPJzbB_NUoM5bRJeJ7TKdNMsLR14SjFKcaM24wRzFGe4jSVnAtnbJZSkaXCEOwIQyRnuZSS9sDlUna-yEs7Na2loAs1D77U4UvV2qvNTuVf1az-UAxJhChuBU5XAqF-X9jYqNJHY4tCV7ZeRIUF5e25OSP_UznDVOKMsJZ6vqSaUMcYrFtvhJHq4lOb8bUDJ399rOm_edEfk8iSvw</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Gomes, Larissa Luz</creator><creator>Moreira, Fabiano Cordeiro</creator><creator>Hamoy, Igor Guerreiro</creator><creator>Santos, Sidney</creator><creator>Assumpção, Paulo</creator><creator>Santana, Adamo L</creator><creator>Ribeiro-Dos-Santos, Andrea</creator><general>Biomedical Informatics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20140101</creationdate><title>Identification of miRNAs Expression Profile in Gastric Cancer Using Self-Organizing Maps (SOM)</title><author>Gomes, Larissa Luz ; Moreira, Fabiano Cordeiro ; Hamoy, Igor Guerreiro ; Santos, Sidney ; Assumpção, Paulo ; Santana, Adamo L ; Ribeiro-Dos-Santos, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-5bb3d4a4648246f33181145e942150b81887556fce9836986c21f2402b4b7773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Hypothesis</topic><toplevel>online_resources</toplevel><creatorcontrib>Gomes, Larissa Luz</creatorcontrib><creatorcontrib>Moreira, Fabiano Cordeiro</creatorcontrib><creatorcontrib>Hamoy, Igor Guerreiro</creatorcontrib><creatorcontrib>Santos, Sidney</creatorcontrib><creatorcontrib>Assumpção, Paulo</creatorcontrib><creatorcontrib>Santana, Adamo L</creatorcontrib><creatorcontrib>Ribeiro-Dos-Santos, Andrea</creatorcontrib><creatorcontrib>Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém, Pará, Brasil; Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém, Pará, Brasil</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomes, Larissa Luz</au><au>Moreira, Fabiano Cordeiro</au><au>Hamoy, Igor Guerreiro</au><au>Santos, Sidney</au><au>Assumpção, Paulo</au><au>Santana, Adamo L</au><au>Ribeiro-Dos-Santos, Andrea</au><aucorp>Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém, Pará, Brasil; Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém, Pará, Brasil</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of miRNAs Expression Profile in Gastric Cancer Using Self-Organizing Maps (SOM)</atitle><jtitle>Bioinformation</jtitle><addtitle>Bioinformation</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>10</volume><issue>5</issue><spage>246</spage><epage>250</epage><pages>246-250</pages><issn>0973-2063</issn><issn>0973-8894</issn><eissn>0973-2063</eissn><eissn>0973-8894</eissn><abstract>In this paper, an unsupervised artificial neural network was implemented to identify the patters of specific signatures. The network was based on the differential expression of miRNAs (under or over expression) found in healthy or cancerous gastric tissues. Among the tissues analyzes, the neural network evaluated 514 miRNAs of gastric tissue that exhibited significant differential expression. The result suggested a specific expression signature nine miRNAs (hsa-mir-21, hsa-mir-29a, hsa-mir-29c, hsa-mir-148a, hsa-mir-141, hsa-let-7b, hsa-mir-31, hsa-mir-451, and hsa-mir-192), all with significant values (p-value < 0.01 and fold change > 5) that clustered the samples into two groups: healthy tissue and gastric cancer tissue. The results obtained "in silico" must be validated in a molecular biology laboratory; if confirmed, this method may be used in the future as a risk marker for gastric cancer development.</abstract><cop>Singapore</cop><pub>Biomedical Informatics</pub><pmid>24966529</pmid><doi>10.6026/97320630010246</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0973-2063 |
ispartof | Bioinformation, 2014-01, Vol.10 (5), p.246-250 |
issn | 0973-2063 0973-8894 0973-2063 0973-8894 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4070031 |
source | PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Hypothesis |
title | Identification of miRNAs Expression Profile in Gastric Cancer Using Self-Organizing Maps (SOM) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A58%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20miRNAs%20Expression%20Profile%20in%20Gastric%20Cancer%20Using%20Self-Organizing%20Maps%20(SOM)&rft.jtitle=Bioinformation&rft.au=Gomes,%20Larissa%20Luz&rft.aucorp=Laborat%C3%B3rio%20de%20Gen%C3%A9tica%20Humana%20e%20M%C3%A9dica,%20Universidade%20Federal%20do%20Par%C3%A1,%20Bel%C3%A9m,%20Par%C3%A1,%20Brasil;%20N%C3%BAcleo%20de%20Pesquisa%20em%20Oncologia,%20Universidade%20Federal%20do%20Par%C3%A1,%20Bel%C3%A9m,%20Par%C3%A1,%20Brasil&rft.date=2014-01-01&rft.volume=10&rft.issue=5&rft.spage=246&rft.epage=250&rft.pages=246-250&rft.issn=0973-2063&rft.eissn=0973-2063&rft_id=info:doi/10.6026/97320630010246&rft_dat=%3Cproquest_pubme%3E1635026542%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1541371924&rft_id=info:pmid/24966529&rfr_iscdi=true |