Identification of miRNAs Expression Profile in Gastric Cancer Using Self-Organizing Maps (SOM)

In this paper, an unsupervised artificial neural network was implemented to identify the patters of specific signatures. The network was based on the differential expression of miRNAs (under or over expression) found in healthy or cancerous gastric tissues. Among the tissues analyzes, the neural net...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformation 2014-01, Vol.10 (5), p.246-250
Hauptverfasser: Gomes, Larissa Luz, Moreira, Fabiano Cordeiro, Hamoy, Igor Guerreiro, Santos, Sidney, Assumpção, Paulo, Santana, Adamo L, Ribeiro-Dos-Santos, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 250
container_issue 5
container_start_page 246
container_title Bioinformation
container_volume 10
creator Gomes, Larissa Luz
Moreira, Fabiano Cordeiro
Hamoy, Igor Guerreiro
Santos, Sidney
Assumpção, Paulo
Santana, Adamo L
Ribeiro-Dos-Santos, Andrea
description In this paper, an unsupervised artificial neural network was implemented to identify the patters of specific signatures. The network was based on the differential expression of miRNAs (under or over expression) found in healthy or cancerous gastric tissues. Among the tissues analyzes, the neural network evaluated 514 miRNAs of gastric tissue that exhibited significant differential expression. The result suggested a specific expression signature nine miRNAs (hsa-mir-21, hsa-mir-29a, hsa-mir-29c, hsa-mir-148a, hsa-mir-141, hsa-let-7b, hsa-mir-31, hsa-mir-451, and hsa-mir-192), all with significant values (p-value < 0.01 and fold change > 5) that clustered the samples into two groups: healthy tissue and gastric cancer tissue. The results obtained "in silico" must be validated in a molecular biology laboratory; if confirmed, this method may be used in the future as a risk marker for gastric cancer development.
doi_str_mv 10.6026/97320630010246
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4070031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1635026542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-5bb3d4a4648246f33181145e942150b81887556fce9836986c21f2402b4b7773</originalsourceid><addsrcrecordid>eNqFUbtOAzEQtBCIR6ClRC6hOPDbdw0SigJESgji0WL5HDsY3SPYFwR8PXdKiEhF5fXs7GhnB4BjjM4FIuIik5QgQRHCiDCxBfZRiyQdtP2n3gMHMb4hxLCUfBfsEZYJwUm2D16GU1s13nmjG19XsHaw9A93VxEOPufBxtiB96F2vrDQV_BGxyZ4A_u6MjbA5-irGXy0hUsmYaYr_939x3oe4enjZHx2CHacLqI9Wr098HQ9eOrfJqPJzbB_NUoM5bRJeJ7TKdNMsLR14SjFKcaM24wRzFGe4jSVnAtnbJZSkaXCEOwIQyRnuZSS9sDlUna-yEs7Na2loAs1D77U4UvV2qvNTuVf1az-UAxJhChuBU5XAqF-X9jYqNJHY4tCV7ZeRIUF5e25OSP_UznDVOKMsJZ6vqSaUMcYrFtvhJHq4lOb8bUDJ399rOm_edEfk8iSvw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1541371924</pqid></control><display><type>article</type><title>Identification of miRNAs Expression Profile in Gastric Cancer Using Self-Organizing Maps (SOM)</title><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Gomes, Larissa Luz ; Moreira, Fabiano Cordeiro ; Hamoy, Igor Guerreiro ; Santos, Sidney ; Assumpção, Paulo ; Santana, Adamo L ; Ribeiro-Dos-Santos, Andrea</creator><creatorcontrib>Gomes, Larissa Luz ; Moreira, Fabiano Cordeiro ; Hamoy, Igor Guerreiro ; Santos, Sidney ; Assumpção, Paulo ; Santana, Adamo L ; Ribeiro-Dos-Santos, Andrea ; Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém, Pará, Brasil; Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém, Pará, Brasil</creatorcontrib><description>In this paper, an unsupervised artificial neural network was implemented to identify the patters of specific signatures. The network was based on the differential expression of miRNAs (under or over expression) found in healthy or cancerous gastric tissues. Among the tissues analyzes, the neural network evaluated 514 miRNAs of gastric tissue that exhibited significant differential expression. The result suggested a specific expression signature nine miRNAs (hsa-mir-21, hsa-mir-29a, hsa-mir-29c, hsa-mir-148a, hsa-mir-141, hsa-let-7b, hsa-mir-31, hsa-mir-451, and hsa-mir-192), all with significant values (p-value &lt; 0.01 and fold change &gt; 5) that clustered the samples into two groups: healthy tissue and gastric cancer tissue. The results obtained "in silico" must be validated in a molecular biology laboratory; if confirmed, this method may be used in the future as a risk marker for gastric cancer development.</description><identifier>ISSN: 0973-2063</identifier><identifier>ISSN: 0973-8894</identifier><identifier>EISSN: 0973-2063</identifier><identifier>EISSN: 0973-8894</identifier><identifier>DOI: 10.6026/97320630010246</identifier><identifier>PMID: 24966529</identifier><language>eng</language><publisher>Singapore: Biomedical Informatics</publisher><subject>Hypothesis</subject><ispartof>Bioinformation, 2014-01, Vol.10 (5), p.246-250</ispartof><rights>2014 Biomedical Informatics 2014</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-5bb3d4a4648246f33181145e942150b81887556fce9836986c21f2402b4b7773</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070031/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070031/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24966529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gomes, Larissa Luz</creatorcontrib><creatorcontrib>Moreira, Fabiano Cordeiro</creatorcontrib><creatorcontrib>Hamoy, Igor Guerreiro</creatorcontrib><creatorcontrib>Santos, Sidney</creatorcontrib><creatorcontrib>Assumpção, Paulo</creatorcontrib><creatorcontrib>Santana, Adamo L</creatorcontrib><creatorcontrib>Ribeiro-Dos-Santos, Andrea</creatorcontrib><creatorcontrib>Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém, Pará, Brasil; Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém, Pará, Brasil</creatorcontrib><title>Identification of miRNAs Expression Profile in Gastric Cancer Using Self-Organizing Maps (SOM)</title><title>Bioinformation</title><addtitle>Bioinformation</addtitle><description>In this paper, an unsupervised artificial neural network was implemented to identify the patters of specific signatures. The network was based on the differential expression of miRNAs (under or over expression) found in healthy or cancerous gastric tissues. Among the tissues analyzes, the neural network evaluated 514 miRNAs of gastric tissue that exhibited significant differential expression. The result suggested a specific expression signature nine miRNAs (hsa-mir-21, hsa-mir-29a, hsa-mir-29c, hsa-mir-148a, hsa-mir-141, hsa-let-7b, hsa-mir-31, hsa-mir-451, and hsa-mir-192), all with significant values (p-value &lt; 0.01 and fold change &gt; 5) that clustered the samples into two groups: healthy tissue and gastric cancer tissue. The results obtained "in silico" must be validated in a molecular biology laboratory; if confirmed, this method may be used in the future as a risk marker for gastric cancer development.</description><subject>Hypothesis</subject><issn>0973-2063</issn><issn>0973-8894</issn><issn>0973-2063</issn><issn>0973-8894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFUbtOAzEQtBCIR6ClRC6hOPDbdw0SigJESgji0WL5HDsY3SPYFwR8PXdKiEhF5fXs7GhnB4BjjM4FIuIik5QgQRHCiDCxBfZRiyQdtP2n3gMHMb4hxLCUfBfsEZYJwUm2D16GU1s13nmjG19XsHaw9A93VxEOPufBxtiB96F2vrDQV_BGxyZ4A_u6MjbA5-irGXy0hUsmYaYr_939x3oe4enjZHx2CHacLqI9Wr098HQ9eOrfJqPJzbB_NUoM5bRJeJ7TKdNMsLR14SjFKcaM24wRzFGe4jSVnAtnbJZSkaXCEOwIQyRnuZSS9sDlUna-yEs7Na2loAs1D77U4UvV2qvNTuVf1az-UAxJhChuBU5XAqF-X9jYqNJHY4tCV7ZeRIUF5e25OSP_UznDVOKMsJZ6vqSaUMcYrFtvhJHq4lOb8bUDJ399rOm_edEfk8iSvw</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Gomes, Larissa Luz</creator><creator>Moreira, Fabiano Cordeiro</creator><creator>Hamoy, Igor Guerreiro</creator><creator>Santos, Sidney</creator><creator>Assumpção, Paulo</creator><creator>Santana, Adamo L</creator><creator>Ribeiro-Dos-Santos, Andrea</creator><general>Biomedical Informatics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20140101</creationdate><title>Identification of miRNAs Expression Profile in Gastric Cancer Using Self-Organizing Maps (SOM)</title><author>Gomes, Larissa Luz ; Moreira, Fabiano Cordeiro ; Hamoy, Igor Guerreiro ; Santos, Sidney ; Assumpção, Paulo ; Santana, Adamo L ; Ribeiro-Dos-Santos, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-5bb3d4a4648246f33181145e942150b81887556fce9836986c21f2402b4b7773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Hypothesis</topic><toplevel>online_resources</toplevel><creatorcontrib>Gomes, Larissa Luz</creatorcontrib><creatorcontrib>Moreira, Fabiano Cordeiro</creatorcontrib><creatorcontrib>Hamoy, Igor Guerreiro</creatorcontrib><creatorcontrib>Santos, Sidney</creatorcontrib><creatorcontrib>Assumpção, Paulo</creatorcontrib><creatorcontrib>Santana, Adamo L</creatorcontrib><creatorcontrib>Ribeiro-Dos-Santos, Andrea</creatorcontrib><creatorcontrib>Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém, Pará, Brasil; Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém, Pará, Brasil</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomes, Larissa Luz</au><au>Moreira, Fabiano Cordeiro</au><au>Hamoy, Igor Guerreiro</au><au>Santos, Sidney</au><au>Assumpção, Paulo</au><au>Santana, Adamo L</au><au>Ribeiro-Dos-Santos, Andrea</au><aucorp>Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém, Pará, Brasil; Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém, Pará, Brasil</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of miRNAs Expression Profile in Gastric Cancer Using Self-Organizing Maps (SOM)</atitle><jtitle>Bioinformation</jtitle><addtitle>Bioinformation</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>10</volume><issue>5</issue><spage>246</spage><epage>250</epage><pages>246-250</pages><issn>0973-2063</issn><issn>0973-8894</issn><eissn>0973-2063</eissn><eissn>0973-8894</eissn><abstract>In this paper, an unsupervised artificial neural network was implemented to identify the patters of specific signatures. The network was based on the differential expression of miRNAs (under or over expression) found in healthy or cancerous gastric tissues. Among the tissues analyzes, the neural network evaluated 514 miRNAs of gastric tissue that exhibited significant differential expression. The result suggested a specific expression signature nine miRNAs (hsa-mir-21, hsa-mir-29a, hsa-mir-29c, hsa-mir-148a, hsa-mir-141, hsa-let-7b, hsa-mir-31, hsa-mir-451, and hsa-mir-192), all with significant values (p-value &lt; 0.01 and fold change &gt; 5) that clustered the samples into two groups: healthy tissue and gastric cancer tissue. The results obtained "in silico" must be validated in a molecular biology laboratory; if confirmed, this method may be used in the future as a risk marker for gastric cancer development.</abstract><cop>Singapore</cop><pub>Biomedical Informatics</pub><pmid>24966529</pmid><doi>10.6026/97320630010246</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0973-2063
ispartof Bioinformation, 2014-01, Vol.10 (5), p.246-250
issn 0973-2063
0973-8894
0973-2063
0973-8894
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4070031
source PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Hypothesis
title Identification of miRNAs Expression Profile in Gastric Cancer Using Self-Organizing Maps (SOM)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A58%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20miRNAs%20Expression%20Profile%20in%20Gastric%20Cancer%20Using%20Self-Organizing%20Maps%20(SOM)&rft.jtitle=Bioinformation&rft.au=Gomes,%20Larissa%20Luz&rft.aucorp=Laborat%C3%B3rio%20de%20Gen%C3%A9tica%20Humana%20e%20M%C3%A9dica,%20Universidade%20Federal%20do%20Par%C3%A1,%20Bel%C3%A9m,%20Par%C3%A1,%20Brasil;%20N%C3%BAcleo%20de%20Pesquisa%20em%20Oncologia,%20Universidade%20Federal%20do%20Par%C3%A1,%20Bel%C3%A9m,%20Par%C3%A1,%20Brasil&rft.date=2014-01-01&rft.volume=10&rft.issue=5&rft.spage=246&rft.epage=250&rft.pages=246-250&rft.issn=0973-2063&rft.eissn=0973-2063&rft_id=info:doi/10.6026/97320630010246&rft_dat=%3Cproquest_pubme%3E1635026542%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1541371924&rft_id=info:pmid/24966529&rfr_iscdi=true