Identification of miRNAs Expression Profile in Gastric Cancer Using Self-Organizing Maps (SOM)

In this paper, an unsupervised artificial neural network was implemented to identify the patters of specific signatures. The network was based on the differential expression of miRNAs (under or over expression) found in healthy or cancerous gastric tissues. Among the tissues analyzes, the neural net...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformation 2014-01, Vol.10 (5), p.246-250
Hauptverfasser: Gomes, Larissa Luz, Moreira, Fabiano Cordeiro, Hamoy, Igor Guerreiro, Santos, Sidney, Assumpção, Paulo, Santana, Adamo L, Ribeiro-Dos-Santos, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, an unsupervised artificial neural network was implemented to identify the patters of specific signatures. The network was based on the differential expression of miRNAs (under or over expression) found in healthy or cancerous gastric tissues. Among the tissues analyzes, the neural network evaluated 514 miRNAs of gastric tissue that exhibited significant differential expression. The result suggested a specific expression signature nine miRNAs (hsa-mir-21, hsa-mir-29a, hsa-mir-29c, hsa-mir-148a, hsa-mir-141, hsa-let-7b, hsa-mir-31, hsa-mir-451, and hsa-mir-192), all with significant values (p-value < 0.01 and fold change > 5) that clustered the samples into two groups: healthy tissue and gastric cancer tissue. The results obtained "in silico" must be validated in a molecular biology laboratory; if confirmed, this method may be used in the future as a risk marker for gastric cancer development.
ISSN:0973-2063
0973-8894
0973-2063
0973-8894
DOI:10.6026/97320630010246