The blood and vascular cell compatibility of heparin-modified ePTFE vascular grafts

Abstract Prosthetic vascular grafts do not mimic the antithrombogenic properties of native blood vessels and therefore have higher rates of complications that involve thrombosis and restenosis. We developed an approach for grafting bioactive heparin, a potent anticoagulant glycosaminoglycan, to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2013-01, Vol.34 (1), p.30-41
Hauptverfasser: Hoshi, Ryan A, Van Lith, Robert, Jen, Michele C, Allen, Josephine B, Lapidos, Karen A, Ameer, Guillermo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Prosthetic vascular grafts do not mimic the antithrombogenic properties of native blood vessels and therefore have higher rates of complications that involve thrombosis and restenosis. We developed an approach for grafting bioactive heparin, a potent anticoagulant glycosaminoglycan, to the lumen of ePTFE vascular grafts to improve their interactions with blood and vascular cells. Heparin was bound to aminated poly(1,8-octanediol- co -citrate) (POC) via its carboxyl functional groups onto POC-modified ePTFE grafts. The bioactivity and stability of the POC-immobilized heparin (POC–Heparin) were characterized via platelet adhesion and clotting assays. The effects of POC–Heparin on the adhesion, viability and phenotype of primary endothelial cells (EC), blood outgrowth endothelial cells (BOECs) obtained from endothelial progenitor cells (EPCs) isolated from human peripheral blood, and smooth muscle cells were also investigated. POC–Heparin grafts maintained bioactivity under physiologically relevant conditions in vitro for at least one month. Specifically, POC–Heparin-coated ePTFE grafts significantly reduced platelet adhesion and inhibited whole blood clotting kinetics. POC–Heparin supported EC and BOEC adhesion, viability, proliferation, NO production, and expression of endothelial cell-specific markers von Willebrand factor (vWF) and vascular endothelial-cadherin (VE-cadherin). Smooth muscle cells cultured on POC–Heparin showed increased expression of α-actin and decreased cell proliferation. This approach can be easily adapted to modify other blood contacting devices such as stents where antithrombogenicity and improved endothelialization are desirable properties.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2012.09.046