Putative Hydrogen Bond to Tyrosine M208 in Photosynthetic Reaction Centers from Rhodobacter capsulatus Significantly Slows Primary Charge Separation

Slow, ∼50 ps, P* → P+HA – electron transfer is observed in Rhodobacter capsulatus reaction centers (RCs) bearing the native Tyr residue at M208 and the single amino acid change of isoleucine at M204 to glutamic acid. The P* decay kinetics are unusually homogeneous (single exponential) at room temper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2014-06, Vol.118 (24), p.6721-6732
Hauptverfasser: Saggu, Miguel, Carter, Brett, Zhou, Xiaoxue, Faries, Kaitlyn, Cegelski, Lynette, Holten, Dewey, Boxer, Steven G, Kirmaier, Christine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Slow, ∼50 ps, P* → P+HA – electron transfer is observed in Rhodobacter capsulatus reaction centers (RCs) bearing the native Tyr residue at M208 and the single amino acid change of isoleucine at M204 to glutamic acid. The P* decay kinetics are unusually homogeneous (single exponential) at room temperature. Comparative solid-state NMR of [4′-13C]­Tyr labeled wild-type and M204E RCs show that the chemical shift of Tyr M208 is significantly altered in the M204E mutant and in a manner consistent with formation of a hydrogen bond to the Tyr M208 hydroxyl group. Models based on RC crystal structure coordinates indicate that if such a hydrogen bond is formed between the Glu at M204 and the M208 Tyr hydroxyl group, the −OH would be oriented in a fashion expected (based on the calculations by Alden et al., J. Phys. Chem. 1996, 100, 16761–16770) to destabilize P+BA – in free energy. Alteration of the environment of Tyr M208 and BA by Glu M204 via this putative hydrogen bond has a powerful influence on primary charge separation.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp503422c