Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans

The Greenland and Antarctic Ice Sheets cover ~\n10% of global land surface, but are rarely considered as active components of the global iron cycle. The ocean waters around both ice sheets harbour highly productive coastal ecosystems, many of which are iron limited. Measurements of iron concentratio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2014-05, Vol.5 (1), p.3929, Article 3929
Hauptverfasser: Hawkings, Jon R., Wadham, Jemma L., Tranter, Martyn, Raiswell, Rob, Benning, Liane G., Statham, Peter J., Tedstone, Andrew, Nienow, Peter, Lee, Katherine, Telling, Jon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Greenland and Antarctic Ice Sheets cover ~\n10% of global land surface, but are rarely considered as active components of the global iron cycle. The ocean waters around both ice sheets harbour highly productive coastal ecosystems, many of which are iron limited. Measurements of iron concentrations in subglacial runoff from a large Greenland Ice Sheet catchment reveal the potential for globally significant export of labile iron fractions to the near-coastal euphotic zone. We estimate that the flux of bioavailable iron associated with glacial runoff is 0.40–2.54 Tg per year in Greenland and 0.06–0.17 Tg per year in Antarctica. Iron fluxes are dominated by a highly reactive and potentially bioavailable nanoparticulate suspended sediment fraction, similar to that identified in Antarctic icebergs. Estimates of labile iron fluxes in meltwater are comparable with aeolian dust fluxes to the oceans surrounding Greenland and Antarctica, and are similarly expected to increase in a warming climate with enhanced melting. Glacial meltwaters may help fertilize the iron-limited Polar Oceans, yet the contribution is poorly constrained. Hawkings et al. monitor iron fluxes during a full-melt season in Greenland, and propose that ice sheets provide highly reactive and potentially bioavailable iron, comparable with aeolian dust fluxes.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms4929