Beta-hexosaminidase activity of the oral pathogen Tannerella forsythia influences biofilm formation on glycoprotein substrates

Abstract Tannerella forsythia is an important pathogen in periodontal disease. Previously, we showed that its sialidase activity is key to utilization of sialic acid from a range of human glycoproteins for biofilm growth and initial adhesion. Removal of terminal sialic acid residues often exposes β-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEMS immunology and medical microbiology 2012-06, Vol.65 (1), p.116-120
Hauptverfasser: Roy, Sumita, Phansopa, Chatchawal, Stafford, Prachi, Honma, Kiyonobu, Douglas, C.W. Ian, Sharma, Ashu, Stafford, Graham P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Tannerella forsythia is an important pathogen in periodontal disease. Previously, we showed that its sialidase activity is key to utilization of sialic acid from a range of human glycoproteins for biofilm growth and initial adhesion. Removal of terminal sialic acid residues often exposes β-linked glucosamine or galactosamine, which may also be important adhesive molecules. In turn, these residues are often removed by a group of enzymes known as β-hexosaminidases. We show here that T. forsythia has the ability to cleave glucosamine and galactosamine from model substrates and that this activity can be inhibited by the hexosaminidase inhibitor PugNAc (O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino N-phenyl carbamate). We now demonstrate for the first time that β-hexosaminidase activity plays a role in biofilm growth on glycoprotein-coated surfaces because biofilm growth and initial cell adhesion are inhibited by PugNAc. In contrast, adhesion to siallo-glycoprotein-coated surfaces is unaltered by PugNAc in the absence of sialidase activity (using a sialidase-deficient mutant) or surprisingly on the clinically relevant substrates saliva or serum. These data indicate that β-hexosaminidase activity has a significant role in biofilm formation in combination with sialidase activity in the biofilm lifestyle of T. forsythia.
ISSN:0928-8244
1574-695X
2049-632X
DOI:10.1111/j.1574-695X.2012.00933.x