Molecule-Based Water-Oxidation Catalysts (WOCs): Cluster-Size-Dependent Dye-Sensitized Polyoxometalates for Visible-Light-Driven O2 Evolution
From atomic level to understand the cluster-size-dependant behavior of dye-sensitized photocatalysts is very important and helpful to design new photocatalytic materials. Although the relationship between the photocatalytic behaviors and particles' size/shape has been widely investigated by the...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2013-05, Vol.3 (1), p.1853-1853, Article 1853 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | From atomic level to understand the cluster-size-dependant behavior of dye-sensitized photocatalysts is very important and helpful to design new photocatalytic materials. Although the relationship between the photocatalytic behaviors and particles' size/shape has been widely investigated by theoretical scientists, the experimental evidences are much less. In this manuscript, we successfully synthesized three new ruthenium dye-sensitized polyoxometalates (POM-n, n relate to different size clusters) with different-sized POM clusters. Under visible-light illumination, all three complexes show the stable O
2
evolution with the efficient order POM-3 > POM-2 > POM-1. This cluster-size-dependent catalytic behavior could be explained by the different numbers of M = O
t
(terminal oxygen) bonds in each individual cluster because it is well-known that Mo = O
t
groups are the catalytically active sites for photooxidation reaction. The proposed mechanism of water oxidation for the dye-sensitized POMs is radical reaction process. This research could open up new perspectives for developing new POM-based WOCs. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/srep01853 |