FRET-enabled biological characterization of polymeric micelles
Abstract Translation of micelles from the laboratory to the clinic is limited by a poor understanding of their in vivo fate following administration. In this paper, we establish a robust approach to real-time monitoring of the in vivo stability of micelles using Förster Resonance Energy Transfer (FR...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2014-04, Vol.35 (11), p.3489-3496 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Translation of micelles from the laboratory to the clinic is limited by a poor understanding of their in vivo fate following administration. In this paper, we establish a robust approach to real-time monitoring of the in vivo stability of micelles using Förster Resonance Energy Transfer (FRET). This characterization method allows for exquisite insight into the fate of micellar constituents, affording the capabilities to rapidly and efficiently evaluate a library of synthetically derived micellar systems as new therapeutic platforms in vivo . FRET-enabled biological characterization further holds potential to tailor material systems being uniquely investigated across the delivery community towards the next generation of stable therapeutics for disease management. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2014.01.027 |