Fine-mapping natural alleles: quantitative complementation to the rescue

Mapping the genes responsible for natural variation and divergence is a challenging task. Many studies have mapped genes to genomic regions or generated lists of candidates, but few studies have implicated specific genes with a high standard of evidence. I propose that combining recent advances in g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology 2014-05, Vol.23 (10), p.2377-2382
1. Verfasser: Turner, Thomas L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mapping the genes responsible for natural variation and divergence is a challenging task. Many studies have mapped genes to genomic regions or generated lists of candidates, but few studies have implicated specific genes with a high standard of evidence. I propose that combining recent advances in genomic engineering with a modified version of the quantitative complementation test will help turn candidate genes into causal genes. By creating loss‐of‐function mutations in natural strains, and using these mutations to quantitatively fail‐to‐complement natural alleles, fine mapping should be greatly facilitated. As an example, I propose that the CRISPR/Cas9 system could be combined with the FLP/FRT system to fine‐map genes in the numerous systems where inversions have frustrated these efforts.
ISSN:0962-1083
1365-294X
DOI:10.1111/mec.12719