The Essential Role of p53-up-regulated Modulator of Apoptosis (Puma) and Its Regulation by FoxO3a Transcription Factor in β-Amyloid-induced Neuron Death

Neurodegeneration underlies the pathology of Alzheimer disease (AD). The molecules responsible for such neurodegeneration in AD brain are mostly unknown. Recent findings indicate that the BH3-only proteins of the Bcl-2 family play an essential role in various cell death paradigms, including neurodeg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2014-04, Vol.289 (15), p.10812-10822
Hauptverfasser: Akhter, Rumana, Sanphui, Priyankar, Biswas, Subhas Chandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neurodegeneration underlies the pathology of Alzheimer disease (AD). The molecules responsible for such neurodegeneration in AD brain are mostly unknown. Recent findings indicate that the BH3-only proteins of the Bcl-2 family play an essential role in various cell death paradigms, including neurodegeneration. Here we report that Puma (p53-up-regulated modulator of apoptosis), an important member of the BH3-only protein family, is up-regulated in neurons upon toxic β-amyloid 1–42 (Aβ(1–42)) exposure both in vitro and in vivo. Down-regulation of Puma by specific siRNA provides significant protection against neuron death induced by Aβ(1–42). We further demonstrate that the activation of p53 and inhibition of PI3K/Akt pathways induce Puma. The transcription factor FoxO3a, which is activated when PI3K/Akt signaling is inhibited, directly binds with the Puma gene and induces its expression upon exposure of neurons to oligomeric Aβ(1–42). Moreover, Puma cooperates with another BH3-only protein, Bim, which is already implicated in AD. Our results thus suggest that Puma is activated by both p53 and PI3K/Akt/FoxO3a pathways and cooperates with Bim to induce neuron death in response to Aβ(1–42). Background: β-Amyloid-induced neuron death and degeneration is considered to be central to the pathogenesis of Alzheimer disease. Results: p53-up-regulated modulator of apoptosis (Puma), a protein of the B-cell lymphoma-2 family, is induced by transcription factor FoxO3a and participates in neuron death in response to β-amyloid. Conclusion: β-Amyloid-induced neuron death requires induction of Puma. Significance: Puma could be a potential target for disease therapeutics.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M113.519355