Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition

Inhibitors of matrix metalloproteinases (MMPs) have been extensively explored to treat pathologies where excessive MMP activity contributes to adverse tissue remodelling. Although MMP inhibition remains a relevant therapeutic target, MMP inhibitors have not translated to clinical application owing t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2014-06, Vol.13 (6), p.653-661
Hauptverfasser: Purcell, Brendan P., Lobb, David, Charati, Manoj B., Dorsey, Shauna M., Wade, Ryan J., Zellars, Kia N., Doviak, Heather, Pettaway, Sara, Logdon, Christina B., Shuman, James A., Freels, Parker D., Gorman III, Joseph H., Gorman, Robert C., Spinale, Francis G., Burdick, Jason A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inhibitors of matrix metalloproteinases (MMPs) have been extensively explored to treat pathologies where excessive MMP activity contributes to adverse tissue remodelling. Although MMP inhibition remains a relevant therapeutic target, MMP inhibitors have not translated to clinical application owing to the dose-limiting side effects following systemic administration of the drugs. Here, we describe the synthesis of a polysaccharide-based hydrogel that can be locally injected into tissues and releases a recombinant tissue inhibitor of MMPs (rTIMP-3) in response to MMP activity. Specifically, rTIMP-3 is sequestered in the hydrogels through electrostatic interactions and is released as crosslinks are degraded by active MMPs. Targeted delivery of the hydrogel/rTIMP-3 construct to regions of MMP overexpression following a myocardial infarction significantly reduced MMP activity and attenuated adverse left ventricular remodelling in a porcine model of myocardial infarction. Our findings demonstrate that local, on-demand MMP inhibition is achievable through the use of an injectable and bioresponsive hydrogel. Excessive activity of matrix metalloproteinases (MMPs) occurs in many diseases; however, the systemic administration of MMP inhibitors can cause undesirable, off-target effects and hence, clinical translation has been hampered. Now, injectable polysaccharide-based hydrogels are shown to enable the localized delivery of an inhibitor of MMP following the hydrogels’ degradation in response to MMP activity. This targeted approach shows efficacy in a myocardial infarction model in large animals.
ISSN:1476-1122
1476-4660
DOI:10.1038/nmat3922