Design, Synthesis, and Antiviral Evaluation of Chimeric Inhibitors of HIV Reverse Transcriptase
In a continuing study of potent bifunctional anti-HIV agents, we rationally designed a novel chimeric inhibitor utilizing thymidine (THY) and a TMC derivative (a diarylpyrimidine NNRTI) linked via a polymethylene linker (ALK). The nucleoside, 5′-hydrogen-phosphonate (H-phosphonate), and 5′-triphosph...
Gespeichert in:
Veröffentlicht in: | ACS medicinal chemistry letters 2013-12, Vol.4 (12), p.1183-1188 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a continuing study of potent bifunctional anti-HIV agents, we rationally designed a novel chimeric inhibitor utilizing thymidine (THY) and a TMC derivative (a diarylpyrimidine NNRTI) linked via a polymethylene linker (ALK). The nucleoside, 5′-hydrogen-phosphonate (H-phosphonate), and 5′-triphosphate forms of this chimeric inhibitor (THY-ALK-TMC) were synthesized and the antiviral activity profiles were evaluated at the enzyme and cellular level. The nucleoside triphosphate (11) and the H-phosphonate (10) derivatives inhibited RT polymerization with an IC50 value of 6.0 and 4.3 nM, respectively. Additionally, chimeric nucleoside (9) and H-phosphonate (10) derivatives reduced HIV replication in a cell-based assay with low nanomolar antiviral potencies. |
---|---|
ISSN: | 1948-5875 1948-5875 |
DOI: | 10.1021/ml4002979 |