Rhythmic oscillations of the microRNA miR-96-5p play a neuroprotective role by indirectly regulating glutathione levels

Glutathione (GSH) is a key antioxidant that plays an important neuroprotective role in the brain. Decreased GSH levels are associated with neurodegenerative diseases such as Parkinson’s disease and Alzheimer’s disease. Here we show that a diurnal fluctuation of GSH levels is correlated with neuropro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2014-05, Vol.5 (1), p.3823-3823, Article 3823
Hauptverfasser: Kinoshita, Chisato, Aoyama, Koji, Matsumura, Nobuko, Kikuchi-Utsumi, Kazue, Watabe, Masahiko, Nakaki, Toshio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glutathione (GSH) is a key antioxidant that plays an important neuroprotective role in the brain. Decreased GSH levels are associated with neurodegenerative diseases such as Parkinson’s disease and Alzheimer’s disease. Here we show that a diurnal fluctuation of GSH levels is correlated with neuroprotective activity against oxidative stress in dopaminergic cells. In addition, we found that the cysteine transporter excitatory amino acid carrier 1 (EAAC1), which is involved in neuronal GSH synthesis, is negatively regulated by the microRNA miR-96-5p, which exhibits a diurnal rhythm. Blocking miR-96-5p by intracerebroventricular administration of an inhibitor increased the level of EAAC1 as well as that of GSH and had a neuroprotective effect against oxidative stress in the mouse substantia nigra. Our results suggest that the diurnal rhythm of miR-96-5p may play a role in neuroprotection by regulating neuronal GSH levels via EAAC1. Glutathione is a key antioxidant that plays an important neuroprotective role in the brain. Here, Kinoshita et al. show that levels of glutathione exhibit diurnal fluctuations that are indirectly regulated by the microRNA miR-96-5p, and that this microRNA plays a neuroprotective role against oxidative stress.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms4823