A high-coverage shRNA screen identifies TMEM129 as an E3 ligase involved in ER-associated protein degradation
Misfolded ER proteins are retrotranslocated into the cytosol for degradation via the ubiquitin–proteasome system. The human cytomegalovirus protein US11 exploits this ER-associated protein degradation (ERAD) pathway to downregulate HLA class I molecules in virus-infected cells, thereby evading elimi...
Gespeichert in:
Veröffentlicht in: | Nature communications 2014-05, Vol.5 (1), p.3832, Article 3832 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Misfolded ER proteins are retrotranslocated into the cytosol for degradation via the ubiquitin–proteasome system. The human cytomegalovirus protein US11 exploits this ER-associated protein degradation (ERAD) pathway to downregulate HLA class I molecules in virus-infected cells, thereby evading elimination by cytotoxic T-lymphocytes. US11-mediated degradation of HLA class I has been instrumental in the identification of key components of mammalian ERAD, including Derlin-1, p97, VIMP and SEL1L. Despite this, the process governing retrotranslocation of the substrate is still poorly understood. Here using a high-coverage genome-wide shRNA library, we identify the uncharacterized protein TMEM129 and the ubiquitin-conjugating E2 enzyme UBE2J2 to be essential for US11-mediated HLA class I downregulation. TMEM129 is an unconventional C4C4-type RING finger E3 ubiquitin ligase that resides within a complex containing various other ERAD components, including Derlin-1, Derlin-2, VIMP and p97, indicating that TMEM129 is an integral part of the ER-resident dislocation complex mediating US11-induced HLA class I degradation.
The human cytomegalovirus protein US11 downregulates host immune responses by redirecting HLA class I molecules for endoplasmic reticulum-associated protein degradation. Using a high-coverage genome-wide shRNA screen, the authors identify TMEM129 as an E3 ubiquitin ligase essential for this process. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms4832 |