A survey of plant and algal genomes and transcriptomes reveals new insights into the evolution and function of the cellulose synthase superfamily

Enzymes of the cellulose synthase (CesA) family and CesA-like (Csl) families are responsible for the synthesis of celluloses and hemicelluloses, and thus are of great interest to bioenergy research. We studied the occurrences and phylogenies of CesA/Csl families in diverse plants and algae by compre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC genomics 2014-04, Vol.15 (1), p.260-260
Hauptverfasser: Yin, Yanbin, Johns, Mitrick A, Cao, Huansheng, Rupani, Manju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Enzymes of the cellulose synthase (CesA) family and CesA-like (Csl) families are responsible for the synthesis of celluloses and hemicelluloses, and thus are of great interest to bioenergy research. We studied the occurrences and phylogenies of CesA/Csl families in diverse plants and algae by comprehensive data mining of 82 genomes and transcriptomes. We found that 1) charophytic green algae (CGA) have orthologous genes in CesA, CslC and CslD families; 2) liverwort genes are found in the CesA, CslA, CslC and CslD families; 3) The fern Pteridium aquilinum not only has orthologs in these conserved families but also in the CslB, CslH and CslE families; 4) basal angiosperms, e.g. Aristolochia fimbriata, have orthologs in these families too; 5) gymnosperms have genes forming clusters ancestral to CslB/H and to CslE/J/G respectively; 6) CslG is found in switchgrass and basal angiosperms; 7) CslJ is widely present in dicots and monocots; 8) CesA subfamilies have already diversified in ferns. We speculate that: (i) ferns and horsetails might both have CslH enzymes, responsible for the synthesis of mixed-linkage glucans and (ii) CslD and similar genes might be responsible for the synthesis of mannans in CGA. Our findings led to a more detailed model of cell wall evolution and suggested that gene loss played an important role in the evolution of Csl families. We also demonstrated the usefulness of transcriptome data in the study of plant cell wall evolution and diversity.
ISSN:1471-2164
1471-2164
DOI:10.1186/1471-2164-15-260