The Parkinsonian mimetic, 6-OHDA, impairs axonal transport in dopaminergic axons
6-hydroxydopamine (6-OHDA) is one of the most commonly used toxins for modeling degeneration of dopaminergic (DA) neurons in Parkinson's disease. 6-OHDA also causes axonal degeneration, a process that appears to precede the death of DA neurons. To understand the processes involved in 6-OHDA-med...
Gespeichert in:
Veröffentlicht in: | Molecular neurodegeneration 2014-05, Vol.9 (1), p.17-17, Article 17 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 6-hydroxydopamine (6-OHDA) is one of the most commonly used toxins for modeling degeneration of dopaminergic (DA) neurons in Parkinson's disease. 6-OHDA also causes axonal degeneration, a process that appears to precede the death of DA neurons. To understand the processes involved in 6-OHDA-mediated axonal degeneration, a microdevice designed to isolate axons fluidically from cell bodies was used in conjunction with green fluorescent protein (GFP)-labeled DA neurons. Results showed that 6-OHDA quickly induced mitochondrial transport dysfunction in both DA and non-DA axons. This appeared to be a general effect on transport function since 6-OHDA also disrupted transport of synaptophysin-tagged vesicles. The effects of 6-OHDA on mitochondrial transport were blocked by the addition of the SOD1-mimetic, Mn(III)tetrakis(4-benzoic acid)porphyrin chloride (MnTBAP), as well as the anti-oxidant N-acetyl-cysteine (NAC) suggesting that free radical species played a role in this process. Temporally, microtubule disruption and autophagy occurred after transport dysfunction yet before DA cell death following 6-OHDA treatment. The results from the study suggest that ROS-mediated transport dysfunction occurs early and plays a significant role in inducing axonal degeneration in response to 6-OHDA treatment. |
---|---|
ISSN: | 1750-1326 1750-1326 |
DOI: | 10.1186/1750-1326-9-17 |