Novel Oral Detoxification of Mercury, Cadmium, And Lead with Thiol-Modified Nanoporous Silica

We have developed a thiol-modified nanoporous silica material (SH-SAMMS) as an oral therapy for the prevention and treatment of heavy metal poisoning. SH-SAMMS has been reported to be highly efficient at capturing heavy metals in biological fluids and water. Herein, SH-SAMMS was examined for efficac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2014-04, Vol.6 (8), p.5483-5493
Hauptverfasser: Sangvanich, Thanapon, Morry, Jingga, Fox, Cade, Ngamcherdtrakul, Worapol, Goodyear, Shaun, Castro, David, Fryxell, Glen E, Addleman, Raymond S, Summers, Anne O, Yantasee, Wassana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have developed a thiol-modified nanoporous silica material (SH-SAMMS) as an oral therapy for the prevention and treatment of heavy metal poisoning. SH-SAMMS has been reported to be highly efficient at capturing heavy metals in biological fluids and water. Herein, SH-SAMMS was examined for efficacy and safety in both in vitro and in vivo animal models for the oral detoxification of heavy metals. In simulated gastrointestinal fluids, SH-SAMMS had a very high affinity (K d) for methyl mercury (MeHg­(I)), inorganic mercury (Hg­(II)), lead (Pb­(II)), and cadmium (Cd­(II)) and was superior to other SAMMS with carboxylic acid or phosphonic acid ligands or commercially available metal chelating sorbents. SH-SAMMS also effectively removed Hg from biologically digested fish tissue with no effect on most nutritional minerals found in fish. SH-SAMMS could hold Hg­(II) and MeHg­(I) tightly inside the nanosize pores, thus preventing bacteria from converting them to more absorbable forms. Rats fed a diet containing MeHg­(I), Cd­(II), and Pb­(II) and SH-SAMMS for 2 weeks had blood Hg levels significantly lower than rats fed the metal-rich diet only. Upon cessation of the metal-rich diet, continued administration of SH-SAMMS for 2 weeks facilitated faster and more extensive clearance of Hg than in animals not continued on oral SH-SAMMS. Rats receiving SH-SAMMS also suffered less weight loss as a result of the metal exposure. Retention of Hg and Cd in major organs was lowest in rats fed with SH-SAMMS throughout the entire four weeks. The reduction of blood Pb by SH-SAMMS was significant. SH-SAMMS was safe to intestinal epithelium model (Caco-2) and common intestinal bacteria (Escherichia coli). Altogether, it has great potential as a new oral drug for the treatment of heavy metal poisoning. This new application is enabled by the installation of tailored interfacial chemistry upon nontoxic nanoporous materials.
ISSN:1944-8244
1944-8252
DOI:10.1021/am5007707