Cloning and Characterization of DULP, a Novel Ubiquitin-Like Molecule from Human Dendritic Cells

We identified a novel ubiquitin-like molecule DULP from human dendritic cells. DULP contains a domain that shares 26% identity and 34% similarity with ubiquitin, and it possesses the corresponding Ile-44 hydrophobic patch used by mono- or poly-ubiquitin to interact with a ubiquitin-interaction motif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular & molecular immunology 2009-02, Vol.6 (1), p.27-33
Hauptverfasser: Liu, Guoyan, Liu, Shuxun, Li, Ping, Tang, Ling, Han, Yanmei, An, Huazhang, Li, Jiangyan, Dai, Xiankun, Li, Nan, Cao, Xuetao, Yu, Yizhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We identified a novel ubiquitin-like molecule DULP from human dendritic cells. DULP contains a domain that shares 26% identity and 34% similarity with ubiquitin, and it possesses the corresponding Ile-44 hydrophobic patch used by mono- or poly-ubiquitin to interact with a ubiquitin-interaction motif (UIM) or ubiquitin-associated domain (UBA). Lysine residue corresponding to 6 of ubiquitin, which is involved in the formation of a multi-ubiquitin chain that can bind proteasomal subunit Rpn10/S5a, is also conserved in its ubiquitin-homology domain. However, DULP does not possess the highly conserved C-terminus Gly-Gly required for ubiquitin conjugation or the Lys-48 required for the formation of polyubiquitin chain to target substrates for degradation, suggesting it might be a novel ubiquitin-domain protein (UDP). DULP was found widely expressed in many cells and the ubiquitin-homology domain was not cleaved. We also confirmed that DULP expression was enriched in the nucleus and much weaker in the cytosol. Besides, we found that overexpression of DULP in 293T cells induced apoptosis, which might not be associated with the mitochondrial or proteasome pathway, with the specific mechanism remain unclear. Further investigations are needed to identify the precise biological functions of DULP. Cellular & Molecular Immunology.
ISSN:1672-7681
2042-0226
DOI:10.1038/cmi.2009.4