Distinct mechanisms of spike timing‐dependent LTD at vertical and horizontal inputs onto L2/3 pyramidal neurons in mouse barrel cortex

Spike timing‐dependent plasticity (STDP) is an attractive candidate to mediate the synaptic changes that support circuit plasticity in sensory cortices during development. STDP is prevalent at excitatory synapses, but it is not known whether the underlying mechanisms are universal, or whether distin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiological reports 2014-03, Vol.2 (3), p.e00271-n/a
Hauptverfasser: Banerjee, Abhishek, González‐Rueda, Ana, Sampaio‐Baptista, Cassandra, Paulsen, Ole, Rodríguez‐Moreno, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spike timing‐dependent plasticity (STDP) is an attractive candidate to mediate the synaptic changes that support circuit plasticity in sensory cortices during development. STDP is prevalent at excitatory synapses, but it is not known whether the underlying mechanisms are universal, or whether distinct mechanisms underpin STDP at different synapses. Here, we set out to compare and contrast STDP at vertical layer 4 and horizontal layer 2/3 inputs onto postsynaptic layer 2/3 neurons in the mouse barrel cortex. We find that both vertical and horizontal inputs show STDP, but that they display different time windows for induction of timing‐dependent long‐term depression (t‐LTD). Moreover, whereas t‐LTD at vertical inputs requires presynaptic NMDA receptors and is expressed presynaptically, using paired recordings we find that t‐LTD at horizontal inputs requires postsynaptic NMDA receptors and is expressed postsynaptically. These results demonstrate that similar forms of plasticity on the same postsynaptic neuron can be mediated by distinct mechanisms, and suggest that these forms of plasticity may enable these two types of cortical synapses to support different functions. e00271 Timing‐dependent LTD (t‐LTD) at vertical inputs on layer 2/3 neurons (L4‐L2/3) requires presynaptic NMDA receptors and is expressed presynaptically, but little is known about these mechanisms at horizontal inputs (L2/3‐L2/3). Using paired recordings we demonstrate here that t‐LTD at L2/3‐L2/3 synapses also requires NMDA receptors but is induced and expressed postsynaptically. These results indicate that similar forms of plasticity on the same postsynaptic neuron may be mediated by distinct mechanisms and suggest that these forms of plasticity may support different developmental functions in the cortex.
ISSN:2051-817X
2051-817X
DOI:10.1002/phy2.271