Short peptides self-assemble to produce catalytic amyloids
Enzymes fold into unique three-dimensional structures, which underlie their remarkable catalytic properties. The requirement to adopt a stable, folded conformation is likely to contribute to their relatively large size (>10,000 Da). However, much shorter peptides can achieve well-defined conforma...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2014-04, Vol.6 (4), p.303-309 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Enzymes fold into unique three-dimensional structures, which underlie their remarkable catalytic properties. The requirement to adopt a stable, folded conformation is likely to contribute to their relatively large size (>10,000 Da). However, much shorter peptides can achieve well-defined conformations through the formation of amyloid fibrils. To test whether short amyloid-forming peptides might in fact be capable of enzyme-like catalysis, we designed a series of seven-residue peptides that act as Zn
2+
-dependent esterases. Zn
2+
helps stabilize the fibril formation, while also acting as a cofactor to catalyse acyl ester hydrolysis. These results indicate that prion-like fibrils are able to not only catalyse their own formation, but they can also catalyse chemical reactions. Thus, they might have served as intermediates in the evolution of modern-day enzymes. These results also have implications for the design of self-assembling nanostructured catalysts including ones containing a variety of biological and non-biological metal ions.
Amyloid fibril formation is often catalysed by mature fibrils or other aggregates on the fibrillization pathway; however, fibrils cannot normally catalyse other chemical reactions. Here, small seven-residue peptides designed from first principles are shown to form amyloid fibrils that can efficiently catalyse ester hydrolysis. |
---|---|
ISSN: | 1755-4330 1755-4349 |
DOI: | 10.1038/nchem.1894 |