Suppression of antimicrobial peptide expression by ureaplasma species

Ureaplasma species commonly colonize the adult urogenital tract and are implicated in invasive diseases of adults and neonates. Factors that permit the organisms to cause chronic colonization or infection are poorly understood. We sought to investigate whether host innate immune responses, specifica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Infection and immunity 2014-04, Vol.82 (4), p.1657-1665
Hauptverfasser: Xiao, Li, Crabb, Donna M, Dai, Yuling, Chen, Yuying, Waites, Ken B, Atkinson, T Prescott
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ureaplasma species commonly colonize the adult urogenital tract and are implicated in invasive diseases of adults and neonates. Factors that permit the organisms to cause chronic colonization or infection are poorly understood. We sought to investigate whether host innate immune responses, specifically, antimicrobial peptides (AMPs), are involved in determining the outcome of Ureaplasma infections. THP-1 cells, a human monocytoid tumor line, were cocultured with Ureaplasma parvum and U. urealyticum. Gene expression levels of a variety of host defense genes were quantified by real-time PCR. In vitro antimicrobial activities of synthetic AMPs against Ureaplasma spp. were determined using a flow cytometry-based assay. Chromosomal histone modifications in host defense gene promoters were tested by chromatin immunoprecipitation (ChIP). DNA methylation status in the AMP promoter regions was also investigated. After stimulation with U. parvum and U. urealyticum, the expression of cell defense genes, including the AMP genes (DEFB1, DEFA5, DEFA6, and CAMP), was significantly downregulated compared to that of TNFA and IL-8, which were upregulated. In vitro flow cytometry-based antimicrobial assay revealed that synthetic peptides LL-37, hBD-3, and hBD-1 had activity against Ureaplasma spp. Downregulation of the AMP genes was associated with chromatin modification alterations, including the significantly decreased histone H3K9 acetylation with U. parvum infection. No DNA methylation status changes were detected upon Ureaplasma infection. In conclusion, AMPs have in vitro activity against Ureaplasma spp., and suppression of AMP expression might be important for the organisms to avoid this aspect of the host innate immune response and to establish chronic infection and colonization.
ISSN:0019-9567
1098-5522
DOI:10.1128/IAI.01231-13