Mesenchymal Stem Cell-Conditioned Medium Enhances Osteogenic and Chondrogenic Differentiation of Human Embryonic Stem Cells and Human Induced Pluripotent Stem Cells by Mesodermal Lineage Induction

Human mesenchymal stem cells (hMSCs) have the ability to differentiate into mesenchymal lineages. In this study, we hypothesized that treatment of embryoid bodies (EBs) composed of either human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs) with a hMSC-conditioned medi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tissue engineering. Part A 2014-04, Vol.20 (7-8), p.136-1313
Hauptverfasser: Lee, Tae-Jin, Jang, Jiho, Kang, Seokyung, Bhang, Suk Ho, Jeong, Gun-Jae, Shin, Heungsoo, Kim, Dong-Wook, Kim, Byung-Soo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human mesenchymal stem cells (hMSCs) have the ability to differentiate into mesenchymal lineages. In this study, we hypothesized that treatment of embryoid bodies (EBs) composed of either human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs) with a hMSC-conditioned medium (CM) can stimulate the induction of the mesodermal lineage and subsequent differentiation toward the osteogenic and chondrogenic lineage. Quantitative real-time reverse transcription–polymerase chain reaction (qRT-PCR) analysis indicated that the hMSC-CM treatment increased gene expression related to the mesodermal lineage and decreased gene expression related to the endodermal and ectodermal lineage in EBs. Fourteen days after culturing the mesodermal lineage-induced EBs in the osteogenic or chondrogenic differentiation medium, we observed enhanced osteogenic and chondrogenic differentiation compared with untreated EBs, as evaluated using qRT-PCR, cytochemistry, immunocytochemistry, and flow cytometry. This method may be useful for enhancing the osteogenic or chondrogenic differentiation of hESCs or hiPSCs.
ISSN:1937-3341
1937-335X
DOI:10.1089/ten.tea.2013.0265