MICAL-family proteins: Complex regulators of the actin cytoskeleton
The molecules interacting with CasL (MICAL) family members participate in a multitude of activities, including axonal growth cone repulsion, membrane trafficking, apoptosis, and bristle development in flies. An interesting feature of MICAL proteins is the presence of an N-terminal flavo-mono-oxygena...
Gespeichert in:
Veröffentlicht in: | Antioxidants & redox signaling 2014-05, Vol.20 (13), p.2059-2073 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The molecules interacting with CasL (MICAL) family members participate in a multitude of activities, including axonal growth cone repulsion, membrane trafficking, apoptosis, and bristle development in flies. An interesting feature of MICAL proteins is the presence of an N-terminal flavo-mono-oxygenase domain. This mono-oxygenase domain generates redox potential with which MICALs can either oxidize proteins or produce reactive oxygen species (ROS). Actin is one such protein that is affected by MICAL function, leading to dramatic cytoskeletal rearrangements. This review describes the MICAL-family members, and discusses their mechanisms of actin-binding and regulation of actin cytoskeleton organization.
Recent studies show that MICALs directly induce oxidation of actin molecules, leading to actin depolymerization. ROS production by MICALs also causes oxidation of collapsin response mediator protein-2, a microtubule assembly promoter, which subsequently undergoes phosphorylation.
MICAL proteins oxidize proteins through two mechanisms: either directly by oxidizing methionine residues or indirectly via the production of ROS. It remains unclear whether MICAL proteins employ both mechanisms or whether the activity of MICAL-family proteins might vary with different substrates.
The identification of additional substrates oxidized by MICAL will shed new light on MICAL protein function. Additional directions include expanding studies toward the MICAL-like homologs that lack flavin adenine dinucleotide domains and oxidation activity. |
---|---|
ISSN: | 1523-0864 1557-7716 |
DOI: | 10.1089/ars.2013.5487 |