Whisker barrel cortex delta oscillations and gamma power in the awake mouse are linked to respiration
Current evidence suggests that delta oscillations (0.5–4 Hz) in the brain are generated by intrinsic network mechanisms involving cortical and thalamic circuits. Here we report that delta band oscillation in spike and local field potential (LFP) activity in the whisker barrel cortex of awake mice is...
Gespeichert in:
Veröffentlicht in: | Nature communications 2014-04, Vol.5 (1), p.3572-3572, Article 3572 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Current evidence suggests that delta oscillations (0.5–4 Hz) in the brain are generated by intrinsic network mechanisms involving cortical and thalamic circuits. Here we report that delta band oscillation in spike and local field potential (LFP) activity in the whisker barrel cortex of awake mice is phase locked to respiration. Furthermore, LFP oscillations in the gamma frequency band (30–80 Hz) are amplitude modulated in phase with the respiratory rhythm. Removal of the olfactory bulb eliminates respiration-locked delta oscillations and delta-gamma phase-amplitude coupling. Our findings thus suggest respiration-locked olfactory bulb activity as a main driving force behind delta oscillations and gamma power modulation in the whisker barrel cortex in the awake state.
Oscillatory neuronal activity in the mammalian neocortex is implicated in cognitive processes but its generation is poorly understood. In this study, the authors show that delta band oscillatory activity in mice phase-locks with respiratory activity and that this is mediated by activity in the olfactory bulb. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms4572 |