Biphasic mechanisms of amphetamine action at the dopamine terminal

In light of recent studies suggesting that amphetamine (AMPH) increases electrically evoked dopamine release ([DA]o), we examined discrepancies between these findings and literature that has demonstrated AMPH-induced decreases in [DA]o. The current study has expanded the inventory of AMPH actions by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2014-04, Vol.34 (16), p.5575-5582
Hauptverfasser: Siciliano, Cody A, Calipari, Erin S, Ferris, Mark J, Jones, Sara R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In light of recent studies suggesting that amphetamine (AMPH) increases electrically evoked dopamine release ([DA]o), we examined discrepancies between these findings and literature that has demonstrated AMPH-induced decreases in [DA]o. The current study has expanded the inventory of AMPH actions by defining two separate mechanisms of AMPH effects on [DA]o at high and low doses, one dopamine transporter (DAT) independent and one DAT dependent, respectively. AMPH concentrations were measured via microdialysis in rat nucleus accumbens after intraperitoneal injections of 1 and 10 mg/kg and yielded values of ∼10 and 200 nM, respectively. Subsequently, voltammetry in brain slices was used to examine the effects of low (10 nM), moderate (100 nM), and high (10 μM) concentrations of AMPH across a range of frequency stimulations (one pulse; five pulses, 20 Hz; 24 pulses, 60 Hz). We discovered biphasic, concentration-dependent effects in WT mice, in which AMPH increased [DA]o at low concentrations and decreased [DA]o at high concentrations across all stimulation types. However, in slices from DAT-KO mice, [DA]o was decreased by all concentrations of AMPH, demonstrating that AMPH-induced increases in [DA]o are DAT dependent, whereas the decreases at high concentrations are DAT independent. We propose that low AMPH concentrations are insufficient to disrupt vesicular sequestration, and therefore AMPH acts solely as a DAT inhibitor to increase [DA]o. When AMPH concentrations are high, the added mechanism of vesicular depletion leads to reduced [DA]o. The biphasic mechanisms observed here confirm and extend the traditional actions of AMPH, but do not support mechanisms involving increased exocytotic release.
ISSN:0270-6474
1529-2401
DOI:10.1523/jneurosci.4050-13.2014