Dynamics of MutS–Mismatched DNA Complexes Are Predictive of Their Repair Phenotypes

MutS recognizes base–base mismatches and base insertions/deletions (IDLs) in newly replicated DNA. Specific interactions between MutS and these errors trigger a cascade of protein–protein interactions that ultimately lead to their repair. The inability to explain why different DNA errors are repaire...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2014-04, Vol.53 (12), p.2043-2052
Hauptverfasser: DeRocco, Vanessa C, Sass, Lauryn E, Qiu, Ruoyi, Weninger, Keith R, Erie, Dorothy A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:MutS recognizes base–base mismatches and base insertions/deletions (IDLs) in newly replicated DNA. Specific interactions between MutS and these errors trigger a cascade of protein–protein interactions that ultimately lead to their repair. The inability to explain why different DNA errors are repaired with widely varying efficiencies in vivo remains an outstanding example of our limited knowledge of this process. Here, we present single-molecule Förster resonance energy transfer measurements of the DNA bending dynamics induced by Thermus aquaticus MutS and the E41A mutant of MutS, which is known to have error specific deficiencies in signaling repair. We compared three DNA mismatches/IDLs (T-bulge, GT, and CC) with repair efficiencies ranging from high to low. We identify three dominant DNA bending states [slightly bent/unbent (U), intermediately bent (I), and significantly bent (B)] and find that the kinetics of interconverting among states varies widely for different complexes. The increased stability of MutS–mismatch/IDL complexes is associated with stabilization of U and lowering of the B to U transition barrier. Destabilization of U is always accompanied by a destabilization of B, supporting the suggestion that B is a “required” precursor to U. Comparison of MutS and MutS-E41A dynamics on GT and the T-bulge suggests that hydrogen bonding to MutS facilitates the changes in base–base hydrogen bonding that are required to achieve the U state, which has been implicated in repair signaling. Taken together with repair propensities, our data suggest that the bending kinetics of MutS–mismatched DNA complexes may control the entry into functional pathways for downstream signaling of repair.
ISSN:0006-2960
1520-4995
1520-4995
DOI:10.1021/bi401429b