Landscape and variation of RNA secondary structure across the human transcriptome
An RNA secondary structure (RSS) map of coding and noncoding RNA from a human family (two parents and their child) is produced; this reveals that approximately 15% of all transcribed single nucleotide variants (SNVs) alter local RNA structure, and these SNVs are depleted in certain locations, sugges...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2014-01, Vol.505 (7485), p.706-709 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An RNA secondary structure (RSS) map of coding and noncoding RNA from a human family (two parents and their child) is produced; this reveals that approximately 15% of all transcribed single nucleotide variants (SNVs) alter local RNA structure, and these SNVs are depleted in certain locations, suggesting that particular RNA structures are important at those sites.
Probing the
in vivo
RNA structurome
Being single-stranded, RNA can adopt a diversity of secondary structures via inter- and intramolecular base-pairing. Three studies published in this issue of
Nature
provide an in-depth view of the variety, dynamics and functional influence of RNA structures
in vivo
. Sarah Assmann and colleagues map the
in vivo
RNA structure of over 10,000 transcripts in the model plant
Arabidopsis thaliana
. Their struc-seq (structure-seqence) approach incorporates
in vivo
chemical (DMS) probing and next-generation sequencing to provide single-nucleotide resolution on a genome-wide scale. Distinct patterns of structure are found to be correlated with coding regions, splice sites and polyadenylation sites. Comparison of these results with those obtained by earlier technologies reveals that, although predictions for some classes of genes were fairly accurate, others, such as those involved in stress response, were poorly predicted and may reflect changes that made them more adapted to that condition. Jonathan Weissman and colleagues have also developed a DMS-seq method to globally monitor RNA structure to single-nucleotide precision in yeast and mammalian cells. Comparing their findings with
in vitro
data, the authors conclude that there is less structure within cells than expected. Even thermostable RNA structures can be denatured in cells, highlighting the importance of cellular processes in regulating RNA structure. Howard Chang and colleagues asked a different question: how does RNA secondary structure change on a transcriptome-wide level in related individuals? By calculating the RNA secondary structures of two parents and their child, they find that about 15% of transcribed single-nucleotide variants affect local secondary structure. These 'RiboSNitches' are depleted in certain locations, suggesting that a particular RNA structure at that site is important. This study illustrates that there is much to be learned about how changes in RNA structure, particularly as imparted by genetic variation, can alter gene expression.
In parallel to the genetic code for protein synthesis, |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/nature12946 |