Multidrug-resistant Escherichia coli from canine urinary tract infections tend to have commensal phylotypes, lower prevalence of virulence determinants and ampC-replicons

Multidrug-resistant Escherichia coli is an emerging clinical challenge in domestic species. Treatment options in many cases are limited. This study characterized MDR E. coli isolates from urinary tract infections in dogs, collected between 2002 and 2011. Isolates were evaluated in terms of β-lactama...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Veterinary microbiology 2014-03, Vol.169 (3-4), p.171-178
Hauptverfasser: Wagner, Samuel, Gally, David L., Argyle, Sally A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multidrug-resistant Escherichia coli is an emerging clinical challenge in domestic species. Treatment options in many cases are limited. This study characterized MDR E. coli isolates from urinary tract infections in dogs, collected between 2002 and 2011. Isolates were evaluated in terms of β-lactamase production, phylogenetic group, ST type, replicon type and virulence marker profile. Comparisons were made with antibiotic susceptible isolates also collected from dogs with urinary tract infections. AmpC β-lactamase was produced in 67% of the MDR isolates (12/18). Of these, 8 could be specifically attributed to the CMY-2 gene. None of the isolates tested in either group expressed ESBLs. Phylo-group distribution was as expected in the susceptible isolates, with an over representation of the pathogenic B2 phylo-group (67%). In contrast, the phylogenetic background for the MDR group was mixed, with representation of commensal phylo-groups A and B1. The B2 phylo-group represented the smallest proportion (A, B1, B2 or D was 28%, 22%, 11% and 33%, respectively). Virulence marker profiles, evaluated using Identibac® microarray, discriminated between the two groups. Marker sequences for a core panel of virulence determinants were identified in most of the susceptible isolates, but not in most of the MDR isolates. These findings indicate that for MDR isolates, plasmid-mediated AmpC is an important resistance mechanism, and while still capable of causing clinical disease, there is evidence for a shift towards phylogenetic groups of reduced inferred virulence potential. There was no evidence of zoonotic potential in either the susceptible or MDR urinary tract isolates in this study.
ISSN:0378-1135
1873-2542
DOI:10.1016/j.vetmic.2014.01.003