Polymer multilayer tattooing for enhanced DNA vaccination

DNA vaccines have many potential benefits but have failed to generate robust immune responses in humans. Recently, methods such as in vivo electroporation have demonstrated improved performance, but an optimal strategy for safe, reproducible, and pain-free DNA vaccination remains elusive. Here we re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2013-04, Vol.12 (4), p.367-376
Hauptverfasser: DeMuth, Peter C., Min, Younjin, Huang, Bonnie, Kramer, Joshua A., Miller, Andrew D., Barouch, Dan H., Hammond, Paula T., Irvine, Darrell J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:DNA vaccines have many potential benefits but have failed to generate robust immune responses in humans. Recently, methods such as in vivo electroporation have demonstrated improved performance, but an optimal strategy for safe, reproducible, and pain-free DNA vaccination remains elusive. Here we report an approach for rapid implantation of vaccine-loaded polymer films carrying DNA, immune-stimulatory RNA, and biodegradable polycations into the immune-cell-rich epidermis, using microneedles coated with releasable polyelectrolyte multilayers. Films transferred into the skin following brief microneedle application promoted local transfection and controlled the persistence of DNA and adjuvants in the skin from days to weeks, with kinetics determined by the film composition. These ‘multilayer tattoo’ DNA vaccines induced immune responses against a model HIV antigen comparable to electroporation in mice, enhanced memory T-cell generation, and elicited 140-fold higher gene expression in non-human primate skin than intradermal DNA injection, indicating the potential of this strategy for enhancing DNA vaccination. Microneedle arrays coated with a pH-sensitive releasable layer act as an intradermal delivery system for polyelectrolyte films containing bioactive molecules for DNA vaccination. The implanted films co-deliver DNA, transfection agents and adjuvants, promoting local transfection and generating immune responses that can be tuned from days to weeks.
ISSN:1476-1122
1476-4660
DOI:10.1038/nmat3550