Muscle RING finger-1 attenuates IGF-I-dependent cardiomyocyte hypertrophy by inhibiting JNK signaling

Recent studies implicate the muscle-specific ubiquitin ligase muscle RING finger-1 (MuRF1) in inhibiting pathological cardiomyocyte growth in vivo by inhibiting the transcription factor SRF. These studies led us to hypothesize that MuRF1 similarly inhibits insulin-like growth factor-I (IGF-I)-mediat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology: endocrinology and metabolism 2014-04, Vol.306 (7), p.E723-E739
Hauptverfasser: Wadosky, Kristine M, Rodríguez, Jessica E, Hite, Rebecca L, Min, Jin-na, Walton, Bethany L, Willis, Monte S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent studies implicate the muscle-specific ubiquitin ligase muscle RING finger-1 (MuRF1) in inhibiting pathological cardiomyocyte growth in vivo by inhibiting the transcription factor SRF. These studies led us to hypothesize that MuRF1 similarly inhibits insulin-like growth factor-I (IGF-I)-mediated physiological cardiomyocyte growth. We identified two lines of evidence to support this hypothesis: IGF-I stimulation of cardiac-derived cells with MuRF1 knockdown 1) exhibited an exaggerated hypertrophy and, 2) conversely, increased MuRF1 expression-abolished IGF-I-dependent cardiomyocyte growth. Enhanced hypertrophy with MuRF1 knockdown was accompanied by increases in Akt-regulated gene expression. Unexpectedly, MuRF1 inhibition of this gene expression profile was not a result of differences in p-Akt. Instead, we found that MuRF1 inhibits total protein levels of Akt, GSK-3β (downstream of Akt), and mTOR while limiting c-Jun protein expression, a mechanism recently shown to govern Akt, GSK-3β, and mTOR activities and expression. These findings establish that MuRF1 inhibits IGF-I signaling by restricting c-Jun activity, a novel mechanism recently identified in the context of ischemia-reperfusion injury. Since IGF-I regulates exercise-mediated physiological cardiac growth, we challenged MuRF1(-/-) and MuRF1-Tg+ mice and their wild-type sibling controls to 5 wk of voluntary wheel running. MuRF1(-/-) cardiac growth was increased significantly over wild-type control; conversely, the enhanced exercise-induced cardiac growth was lost in MuRF1-Tg+ animals. These studies demonstrate that MuRF1-dependent attenuation of IGF-I signaling via c-Jun is applicable in vivo and establish that further understanding of this novel mechanism may be crucial in the development of therapies targeting IGF-I signaling.
ISSN:0193-1849
1522-1555
DOI:10.1152/ajpendo.00326.2013