Identification of the N-Linked Glycosylation Sites of Vitamin K-Dependent Carboxylase and Effect of Glycosylation on Carboxylase Function

The vitamin K-dependent carboxylase is an integral membrane protein which is required for the post-translational modification of a variety of vitamin K-dependent proteins. Previous studies have suggested carboxylase is a glycoprotein with N-linked glycosylation sites. In this study, we identify the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2006-12, Vol.45 (49), p.14755-14763
Hauptverfasser: Tie, Jian-Ke, Zheng, Mei-Yan, Pope, R. Marshall, Straight, David L., Stafford, Darrel W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The vitamin K-dependent carboxylase is an integral membrane protein which is required for the post-translational modification of a variety of vitamin K-dependent proteins. Previous studies have suggested carboxylase is a glycoprotein with N-linked glycosylation sites. In this study, we identify the N-glycosylation sites of carboxylase by mass spectrometric peptide mapping analyses combined with site-directed mutagenesis. Our mass spectrometric results show that the N-linked glycosylation in carboxylase occurs at positions N459, N550, N605, and N627. Eliminating these glycosylation sites by changing asparagine to glutamine caused the mutant carboxylase to migrate faster on SDS−PAGE gels, adding further evidence that these sites are glycosylated. In addition, the mutation studies identified N525, a site that cannot be recovered by mass spectroscopy analysis, as a glycosylation site. Furthermore, the potential glycosylation site at N570 is glycosylated only if all five natural glycosylation sites are simultaneously mutated. Removal of the oligosaccharides by glycosidase from wild-type carboxylase or by elimination of the functional glycosylation sites by site-directed mutagenesis did not affect either the carboxylation or epoxidation activity when the small FLEEL pentapeptide was used as a substrate, suggesting that N-linked glycosylation is not required for the enzymatic function of carboxylase. In contrast, when site N570 and the five natural glycosylation sites were mutated simultaneously, the resulting carboxylase protein was degraded. Our results suggest that N-linked glycosylation is not essential for carboxylase enzymatic activity but is important for protein folding and stability.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi0618518