1,1-Difluoroethyl-substituted triazolothienopyrimidines as inhibitors of a human urea transport protein (UT-B): New analogs and binding model

The kidney urea transport protein UT-B is an attractive target for the development of small-molecule inhibitors with a novel diuretic (‘urearetic’) action. Previously, two compounds in the triazolothienopyrimidine scaffold (1a and 1c) were reported as UT-B inhibitors. Compound 1c incorporates a 1,1-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioorganic & medicinal chemistry letters 2013-06, Vol.23 (11), p.3338-3341
Hauptverfasser: Liu, Y., Esteva-Font, C., Yao, C., Phuan, P.W., Verkman, A.S., Anderson, M.O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The kidney urea transport protein UT-B is an attractive target for the development of small-molecule inhibitors with a novel diuretic (‘urearetic’) action. Previously, two compounds in the triazolothienopyrimidine scaffold (1a and 1c) were reported as UT-B inhibitors. Compound 1c incorporates a 1,1-difluoroethyl group, which affords improved microsomal stability when compared to the corresponding ethyl-substituted compound 1a. Here, a small focused library (4a–4f) was developed around lead inhibitor 1c to investigate the requirement of an amidine-linked thiophene in the inhibitor scaffold. Two compounds (4a and 4b) with nanomolar inhibitory potency (IC50≈40nM) were synthesized. Computational docking of lead structure 1c and 4a–4f into a homology model of the UT-B cytoplasmic surface suggested binding with the core heterocycle buried deep into the hydrophobic pore region of the protein.
ISSN:0960-894X
1464-3405
DOI:10.1016/j.bmcl.2013.03.089