Synthesis and anti-proliferative activity of aromatic substituted 5-((1-benzyl-1H-indol-3-yl)methylene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione analogs against human tumor cell lines

Based on previous SAR studies on N-benzylindole and barbituric acid hybrid molecules, we have synthesized a series of aromatic substituted 5-((1-benzyl-1H-indol-3-yl)methylene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione analogs (3a–i) and evaluated them for their in vitro growth inhibition and cy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioorganic & medicinal chemistry letters 2014-01, Vol.24 (2), p.601-603
Hauptverfasser: Madadi, Nikhil Reddy, Penthala, Narsimha Reddy, Janganati, Venumadhav, Crooks, Peter A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on previous SAR studies on N-benzylindole and barbituric acid hybrid molecules, we have synthesized a series of aromatic substituted 5-((1-benzyl-1H-indol-3-yl)methylene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione analogs (3a–i) and evaluated them for their in vitro growth inhibition and cytotoxicity against a panel of 60 human tumor cell lines. Compounds 3c, 3d, 3f and 3g were identified as highly potent anti-proliferative compounds against ovarian, renal and breast cancer cell lines with GI50 values in low the nanomolar range. The 4-methoxy-N-benzyl analog (3d) was the most active compound with GI50 values of 20nM and 40nM against OVCAR-5 ovarian cancer cells and MDA-MB-468 breast cancer cells, respectively. Two other analogs, 3c (the 4-methyl-N-benzyl analog) and 3g (the 4-fluoro-N-benzyl analog) exhibited equimolar potency against MDA-MB-468 cells GI50=30nM). Analog 3f (the 4-chloro-N-benzyl analog) exhibited a GI50 value of 40nM against renal cancer cell line A498. These results suggest that aromatic substituted N-benzylindole dimethylbarbituric acid hybrids may have potential for development as clinical candidates to treat a variety of solid tumors.
ISSN:0960-894X
1464-3405
DOI:10.1016/j.bmcl.2013.12.013