Functional similarity and physical association between GCN5 and ADA2: putative transcriptional adaptors

A selection for yeast mutants resistant to GAL4 - VP16-induced toxicity previously identified two genes, ADA2 and ADA3, which may function as adaptors for some transcriptional activation domains and thereby facilitate activation. Here we identify two new genes by the same selection, one of which is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 1994-10, Vol.13 (20), p.4807-4815
Hauptverfasser: Marcus, G.A, Silverman, N, Berger, S.L, Horiuchi, J, Guarente, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A selection for yeast mutants resistant to GAL4 - VP16-induced toxicity previously identified two genes, ADA2 and ADA3, which may function as adaptors for some transcriptional activation domains and thereby facilitate activation. Here we identify two new genes by the same selection, one of which is identical to GCN5. We show that gcn5 mutants share properties with ada mutants, including slow growth, temperature sensitivity and reduced activation by the VP16 and GCN4 activation domains. Double mutant studies suggest that ADA2 and GCN5 function together in a complex or pathway. Moreover, we demonstrate that GCN5 binds to ADA2 both by the two-hybrid assay in vivo and by co-immunoprecipitation in vitro. This suggests that ADA2 and GCN5 are part of a heteromeric complex that mediates transcriptional activation. Finally, we demonstrate the functional importance of the bromodomain of GCN5, a sequence found in other global transcription factors such as the SWI/SNF complex and the TATA binding protein-associated factors. This domain is not required for the interaction between GCN5 and ADA2 and thus may mediate a more general activity of transcription factors.
ISSN:0261-4189
1460-2075
DOI:10.1002/j.1460-2075.1994.tb06806.x