Enantioselective recognition at mesoporous chiral metal surfaces
Chirality is widespread in natural systems, and artificial reproduction of chiral recognition is a major scientific challenge, especially owing to various potential applications ranging from catalysis to sensing and separation science. In this context, molecular imprinting is a well-known approach f...
Gespeichert in:
Veröffentlicht in: | Nature communications 2014-02, Vol.5 (1), p.3325-3325, Article 3325 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chirality is widespread in natural systems, and artificial reproduction of chiral recognition is a major scientific challenge, especially owing to various potential applications ranging from catalysis to sensing and separation science. In this context, molecular imprinting is a well-known approach for generating materials with enantioselective properties, and it has been successfully employed using polymers. However, it is particularly difficult to synthesize chiral metal matrices by this method. Here we report the fabrication of a chirally imprinted mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and chiral template molecules. The porous platinum retains a chiral character after removal of the template molecules. A matrix obtained in this way exhibits a large active surface area due to its mesoporosity, and also shows a significant discrimination between two enantiomers, when they are probed using such materials as electrodes.
Chemical synthesis of chiral materials with enantioselective properties is an ongoing challenge. Here, the authors fabricate a chirally imprinted mesoporous metal from the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and chiral templating molecules. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms4325 |