Exact traveling wave solutions of modified KdV–Zakharov–Kuznetsov equation and viscous Burgers equation

Mathematical modeling of many physical systems leads to nonlinear evolution equations because most physical systems are inherently nonlinear in nature. The investigation of traveling wave solutions of nonlinear partial differential equations (NPDEs) plays a significant role in the study of nonlinear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SpringerPlus 2014-02, Vol.3 (1), p.105-105, Article 105
Hauptverfasser: Islam, Md Hamidul, Khan, Kamruzzaman, Akbar, M Ali, Salam, Md Abdus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mathematical modeling of many physical systems leads to nonlinear evolution equations because most physical systems are inherently nonlinear in nature. The investigation of traveling wave solutions of nonlinear partial differential equations (NPDEs) plays a significant role in the study of nonlinear physical phenomena. In this article, we construct the traveling wave solutions of modified KDV-ZK equation and viscous Burgers equation by using an enhanced ( G '/G ) -expansion method. A number of traveling wave solutions in terms of unknown parameters are obtained. Derived traveling wave solutions exhibit solitary waves when special values are given to its unknown parameters. Mathematics subject classification 35C07; 35C08; 35P99
ISSN:2193-1801
2193-1801
DOI:10.1186/2193-1801-3-105