High-throughput sequencing reveals the disruption of methylation of imprinted gene in induced pluripotent stem cells

It remains controversial whether the abnormal epigenetic modifications accumulated in the induced pluripotent stem cells (iPSCs) can ultimately affect iPSC pluripotency. To probe this question, iPSC lines with the same genetic background and proviral integration sites were established, and the pluri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell research 2014-03, Vol.24 (3), p.293-306
Hauptverfasser: Chang, Gang, Gao, Shuai, Hou, Xinfeng, Xu, Zijian, Liu, Yanfeng, Kang, Lan, Tao, Yu, Liu, Wenqiang, Huang, Bo, Kou, Xiaochen, Chen, Jiayu, An, Lei, Miao, Kai, Di, Keqian, Wang, Zhilong, Tan, Kun, Cheng, Tao, Cai, Tao, Gao, Shaorong, Tian, Jianhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It remains controversial whether the abnormal epigenetic modifications accumulated in the induced pluripotent stem cells (iPSCs) can ultimately affect iPSC pluripotency. To probe this question, iPSC lines with the same genetic background and proviral integration sites were established, and the pluripotency state of each iPSC line was characterized using tetraploid (4N) complementation assay. Subsequently, gene expression and global epigenetic modifications of "4N-ON" and the corresponding "4N-OFF" iPSC lines were compared through deep sequencing analyses of mRNA expression, small RNA profile, histone modifications (H3K27me3, H3K4me3, and H3K4me2), and DNA methylation. We found that methylation of an imprinted gene, Zrsrl, was consistently disrupted in the iPSC lines with reduced pluripotency. Furthermore, the disrupted methylation could not be rescued by improving culture conditions or subcloning of iPSCs. Moreover, the relationship between hypomethylation of Zrsrl and pluripotency state of iPSCs was further validated in independent iPSC lines derived from other reprogramming systems.
ISSN:1001-0602
1748-7838
DOI:10.1038/cr.2013.173