Inhibition of Gsk3β activity improves β-cell function in c-KitWv/+ male mice
Previous studies have shown that the stem cell marker, c-Kit, is involved in glucose homeostasis. We recently reported that c-KitWv/+ male mice displayed the onset of diabetes at 8 weeks of age; however, the mechanisms by which c-Kit regulates β-cell proliferation and function are unknown. The purpo...
Gespeichert in:
Veröffentlicht in: | Laboratory investigation 2012-04, Vol.92 (4), p.543-555 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Previous studies have shown that the stem cell marker, c-Kit, is involved in glucose homeostasis. We recently reported that c-KitWv/+ male mice displayed the onset of diabetes at 8 weeks of age; however, the mechanisms by which c-Kit regulates β-cell proliferation and function are unknown. The purpose of this study is to examine if c-KitWv/+ mutation-induced β-cell dysfunction is associated with downregulation of the phospho-Akt/Gsk3β pathway in c-KitWv/+ male mice. Histology and cell signaling were examined in C57BL/6J/KitWv/+ (c-KitWv/+) and wild-type (c-Kit+/+) mice using immunofluorescence and western blotting approaches. The Gsk3β inhibitor, 1-azakenpaullone (1-AKP), was administered to c-KitWv/+ and c-Kit+/+ mice for 2 weeks, whereby alterations in glucose metabolism were examined and morphometric analyses were performed. A significant reduction in phosphorylated Akt was observed in the islets of c-KitWv/+ mice (P |
---|---|
ISSN: | 0023-6837 1530-0307 |
DOI: | 10.1038/labinvest.2011.200 |