Borrelia species induce inflammasome activation and IL-17 production through a caspase-1-dependent mechanism

Borrelia burgdorferi spirochetes cause Lyme disease, which can result in severe clinical symptoms such as multiple joint inflammation and neurological disorders. IFN-γ and IL-17 have been suggested to play an important role in the host defense against Borrelia, and in the immunopathology of Lyme dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of immunology 2011-01, Vol.41 (1), p.172-181
Hauptverfasser: Oosting, Marije, van de Veerdonk, Frank L, Kanneganti, Thirumala-Devi, Sturm, Patrick, Verschueren, Ineke, Berende, Anneleen, van der Meer, Jos W.M, Kullberg, Bart-Jan, Netea, Mihai G, Joosten, Leo A.B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Borrelia burgdorferi spirochetes cause Lyme disease, which can result in severe clinical symptoms such as multiple joint inflammation and neurological disorders. IFN-γ and IL-17 have been suggested to play an important role in the host defense against Borrelia, and in the immunopathology of Lyme disease. The caspase-1-dependent cytokine IL-1β has been linked to the generation of IL-17-producing T cells, whereas caspase-1-mediated IL-18 is crucial for IFN-γ production. In this study, we show by using knockout mice the role of inflammasome-activated caspase-1 in the regulation of cytokine responses by B. burgdorferi. Caspase-1-deficient cells showed significantly less IFN-γ and IL-17 production after Borrelia stimulation. A lack of IL-1β was responsible for the defective IL-17 production, whereas IL-18 was crucial for the IFN-γ production. Caspase-1-dependent IL-33 played no role in the Borrelia-induced production of IL-1β, IFN-γ or IL-17. In conclusion, we describe for the first time the role of the inflammasome-dependent caspase-1 activation of cytokines in the regulation of IL-17 production induced by Borrelia spp. As IL-17 has been implicated in the pathogenesis of chronic Lyme disease, these data suggest that caspase-1 targeting may represent a new immunomodulatory strategy for the treatment of complications of late stage Lyme disease.
ISSN:0014-2980
1521-4141
DOI:10.1002/eji.201040385