Exogenous interleukin-10 alleviates allergic inflammation but inhibits local interleukin-10 expression in a mouse allergic rhinitis model

Interleukin-10 (IL-10) has an important anti-inflammatory and immunoregulatory function, and its expression is negatively correlated with the development and severity of allergic rhinitis (AR). However, the in vivo effects of exogenous IL-10 on AR have not been studied and the mechanisms underlying...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC immunology 2014-02, Vol.15 (1), p.9-9, Article 9
Hauptverfasser: Wang, Shui-Bin, Deng, Yu-Qin, Ren, Jie, Xiao, Bo-Kui, Liu, Zheng, Tao, Ze-Zhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interleukin-10 (IL-10) has an important anti-inflammatory and immunoregulatory function, and its expression is negatively correlated with the development and severity of allergic rhinitis (AR). However, the in vivo effects of exogenous IL-10 on AR have not been studied and the mechanisms underlying the effects of IL-10 have not been fully understood. Here, we investigated the effects of intranasal administration of recombinant mouse (rm) IL-10 on the expression of Th responses and local IL-10 in a mouse model of AR induced by ovalbumin. Administration of rmIL-10 during challenge significantly reduced the number of eosinophils and mast cells, as well as Type 2 helper T (Th2) and Th17 cell related cytokine and transcription factor levels in the nasal mucosa and nasal lavage fluid in AR mice. The rmIL-10 treatment significantly inhibited the number of IL-10-positive cells and IL-10 mRNA expression in the nasal mucosa in AR mice. Our results show that exogenous IL-10 administrated in challenge phase alleviates nasal allergic inflammation in AR mice, most likely by inhibiting Th2 and Th17 responses. It can also inhibit local IL-10 levels in the nasal mucosa. Our findings indicate that IL-10 may have the potential as an inhibitor of AR.
ISSN:1471-2172
1471-2172
DOI:10.1186/1471-2172-15-9