Organocatalytic Conversion of Cellulose into a Platform Chemical

The search for a source of fuels and chemicals that is both abundant and renewable has become of paramount importance. The polysaccharide cellulose meets both criteria, and methods have been developed for its transformation into the platform chemical 5-(hydroxymethyl)furfural (HMF). These methods em...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2013-01, Vol.4 (1), p.196-199
Hauptverfasser: Caes, Benjamin R, Palte, Michael J, Raines, Ronald T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The search for a source of fuels and chemicals that is both abundant and renewable has become of paramount importance. The polysaccharide cellulose meets both criteria, and methods have been developed for its transformation into the platform chemical 5-(hydroxymethyl)furfural (HMF). These methods employ harsh reaction conditions or toxic heavy metal catalysts, deterring large-scale implementation. Here, we describe a low-temperature, one-pot route that uses -carboxyl-substituted phenylboronic acids as organocatalysts in conjunction with hydrated magnesium chloride and mineral acids to convert cellulose and cellulose-rich municipal waste to HMF in yields comparable to processes that use toxic heavy metal catalysts. Isotopic labeling studies indicate that the key aldose-to-ketose transformation occurs via an enediol intermediate. The route, which also allows for facile catalyst recovery and recycling, provides a green prototype for cellulose conversion.
ISSN:2041-6520
2041-6539
DOI:10.1039/c2sc21403b