Composite Three-Dimensional Woven Scaffolds with Interpenetrating Network Hydrogels to Create Functional Synthetic Articular Cartilage

The development of synthetic biomaterials that possess mechanical properties mimicking those of native tissues remains an important challenge to the field of materials. In particular, articular cartilage is a complex nonlinear, viscoelastic, and anisotropic material that exhibits a very low coeffici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2013-12, Vol.23 (47), p.5833-5839
Hauptverfasser: Liao, I-Chien, Moutos, Franklin T., Estes, Bradley T., Zhao, Xuanhe, Guilak, Farshid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5839
container_issue 47
container_start_page 5833
container_title Advanced functional materials
container_volume 23
creator Liao, I-Chien
Moutos, Franklin T.
Estes, Bradley T.
Zhao, Xuanhe
Guilak, Farshid
description The development of synthetic biomaterials that possess mechanical properties mimicking those of native tissues remains an important challenge to the field of materials. In particular, articular cartilage is a complex nonlinear, viscoelastic, and anisotropic material that exhibits a very low coefficient of friction, allowing it to withstand millions of cycles of joint loading over decades of wear. Here, a three‐dimensionally woven fiber scaffold that is infiltrated with an interpenetrating network hydrogel can build a functional biomaterial that provides the load‐bearing and tribological properties of native cartilage. An interpenetrating dual‐network “tough‐gel” consisting of alginate and polyacrylamide was infused into a porous three‐dimensionally woven poly(ϵ‐caprolactone) fiber scaffold, providing a versatile fiber‐reinforced composite structure as a potential acellular or cell‐based replacement for cartilage repair. A three‐dimensionally woven fiber scaffold (left) shows significant reduction in surface roughness after being infused with an interpenetrating network (IPN) hydrogel consisting of alginate and polyacrylamide (right), as measured using an optical profiler. These fiber‐reinforced IPN scaffolds provide a versatile composite structure as a potential acellular or cell‐based replacement for tissue repair.
doi_str_mv 10.1002/adfm.201300483
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3933181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826584367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5483-52ab1590bf88688626eeb5d083b55b2b5795bf9fcef6881ec2728a1211f024383</originalsourceid><addsrcrecordid>eNqFkU9v0zAYxiMEYmNw5Yh85JLiP3HiXJCqjLYTYxw62G6Wk7xpzRK7s92VfgE-N64yqnGaZNmv9D7PT370JMl7gicEY_pJtd0woZgwjDPBXiSnJCd5yjAVL48zuT1J3nj_C2NSFCx7nZzQjBciL8rT5E9lh431OgC6XjuA9FwPYLy2RvXoxj6AQctGdZ3tW492OqzRhQngNmAgOBW0WaErCDvr7tBi3zq7gt6jYFHlQEXmbGuaMMKWexPWEHSDpi7e2145VKk49moFb5NXneo9vHt8z5Ifsy_X1SK9_D6_qKaXacNjvJRTVRNe4roTIo-H5gA1b7FgNec1rXlR8roruwa6uCbQ0IIKRSghHaYZE-ws-TxyN9t6gLYBE1P0cuP0oNxeWqXl_xuj13JlHyQrGSOCRMDHR4Cz91vwQQ7aN9D3yoDdekkEzbnIWF48L82LmCXPigN1MkobZ7130B1_RLA89CwPPctjz9Hw4WmOo_xfsVFQjoKd7mH_DE5Oz2ffnsLT0at9gN9Hr3J3MsYquLy5msv57YLOluyn_Mr-AjnZxzA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671596471</pqid></control><display><type>article</type><title>Composite Three-Dimensional Woven Scaffolds with Interpenetrating Network Hydrogels to Create Functional Synthetic Articular Cartilage</title><source>Wiley Online Library All Journals</source><creator>Liao, I-Chien ; Moutos, Franklin T. ; Estes, Bradley T. ; Zhao, Xuanhe ; Guilak, Farshid</creator><creatorcontrib>Liao, I-Chien ; Moutos, Franklin T. ; Estes, Bradley T. ; Zhao, Xuanhe ; Guilak, Farshid</creatorcontrib><description>The development of synthetic biomaterials that possess mechanical properties mimicking those of native tissues remains an important challenge to the field of materials. In particular, articular cartilage is a complex nonlinear, viscoelastic, and anisotropic material that exhibits a very low coefficient of friction, allowing it to withstand millions of cycles of joint loading over decades of wear. Here, a three‐dimensionally woven fiber scaffold that is infiltrated with an interpenetrating network hydrogel can build a functional biomaterial that provides the load‐bearing and tribological properties of native cartilage. An interpenetrating dual‐network “tough‐gel” consisting of alginate and polyacrylamide was infused into a porous three‐dimensionally woven poly(ϵ‐caprolactone) fiber scaffold, providing a versatile fiber‐reinforced composite structure as a potential acellular or cell‐based replacement for cartilage repair. A three‐dimensionally woven fiber scaffold (left) shows significant reduction in surface roughness after being infused with an interpenetrating network (IPN) hydrogel consisting of alginate and polyacrylamide (right), as measured using an optical profiler. These fiber‐reinforced IPN scaffolds provide a versatile composite structure as a potential acellular or cell‐based replacement for tissue repair.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201300483</identifier><identifier>PMID: 24578679</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>3D weaving ; Biomaterials ; Biomedical materials ; Cartilage ; Fibers ; Hydrogels ; Interpenetrating networks ; osteoarthritis ; Scaffolds ; Surgical implants ; synthetic cartilage ; tissue engineering</subject><ispartof>Advanced functional materials, 2013-12, Vol.23 (47), p.5833-5839</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5483-52ab1590bf88688626eeb5d083b55b2b5795bf9fcef6881ec2728a1211f024383</citedby><cites>FETCH-LOGICAL-c5483-52ab1590bf88688626eeb5d083b55b2b5795bf9fcef6881ec2728a1211f024383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201300483$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201300483$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24578679$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liao, I-Chien</creatorcontrib><creatorcontrib>Moutos, Franklin T.</creatorcontrib><creatorcontrib>Estes, Bradley T.</creatorcontrib><creatorcontrib>Zhao, Xuanhe</creatorcontrib><creatorcontrib>Guilak, Farshid</creatorcontrib><title>Composite Three-Dimensional Woven Scaffolds with Interpenetrating Network Hydrogels to Create Functional Synthetic Articular Cartilage</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>The development of synthetic biomaterials that possess mechanical properties mimicking those of native tissues remains an important challenge to the field of materials. In particular, articular cartilage is a complex nonlinear, viscoelastic, and anisotropic material that exhibits a very low coefficient of friction, allowing it to withstand millions of cycles of joint loading over decades of wear. Here, a three‐dimensionally woven fiber scaffold that is infiltrated with an interpenetrating network hydrogel can build a functional biomaterial that provides the load‐bearing and tribological properties of native cartilage. An interpenetrating dual‐network “tough‐gel” consisting of alginate and polyacrylamide was infused into a porous three‐dimensionally woven poly(ϵ‐caprolactone) fiber scaffold, providing a versatile fiber‐reinforced composite structure as a potential acellular or cell‐based replacement for cartilage repair. A three‐dimensionally woven fiber scaffold (left) shows significant reduction in surface roughness after being infused with an interpenetrating network (IPN) hydrogel consisting of alginate and polyacrylamide (right), as measured using an optical profiler. These fiber‐reinforced IPN scaffolds provide a versatile composite structure as a potential acellular or cell‐based replacement for tissue repair.</description><subject>3D weaving</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Cartilage</subject><subject>Fibers</subject><subject>Hydrogels</subject><subject>Interpenetrating networks</subject><subject>osteoarthritis</subject><subject>Scaffolds</subject><subject>Surgical implants</subject><subject>synthetic cartilage</subject><subject>tissue engineering</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v0zAYxiMEYmNw5Yh85JLiP3HiXJCqjLYTYxw62G6Wk7xpzRK7s92VfgE-N64yqnGaZNmv9D7PT370JMl7gicEY_pJtd0woZgwjDPBXiSnJCd5yjAVL48zuT1J3nj_C2NSFCx7nZzQjBciL8rT5E9lh431OgC6XjuA9FwPYLy2RvXoxj6AQctGdZ3tW492OqzRhQngNmAgOBW0WaErCDvr7tBi3zq7gt6jYFHlQEXmbGuaMMKWexPWEHSDpi7e2145VKk49moFb5NXneo9vHt8z5Ifsy_X1SK9_D6_qKaXacNjvJRTVRNe4roTIo-H5gA1b7FgNec1rXlR8roruwa6uCbQ0IIKRSghHaYZE-ws-TxyN9t6gLYBE1P0cuP0oNxeWqXl_xuj13JlHyQrGSOCRMDHR4Cz91vwQQ7aN9D3yoDdekkEzbnIWF48L82LmCXPigN1MkobZ7130B1_RLA89CwPPctjz9Hw4WmOo_xfsVFQjoKd7mH_DE5Oz2ffnsLT0at9gN9Hr3J3MsYquLy5msv57YLOluyn_Mr-AjnZxzA</recordid><startdate>20131217</startdate><enddate>20131217</enddate><creator>Liao, I-Chien</creator><creator>Moutos, Franklin T.</creator><creator>Estes, Bradley T.</creator><creator>Zhao, Xuanhe</creator><creator>Guilak, Farshid</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131217</creationdate><title>Composite Three-Dimensional Woven Scaffolds with Interpenetrating Network Hydrogels to Create Functional Synthetic Articular Cartilage</title><author>Liao, I-Chien ; Moutos, Franklin T. ; Estes, Bradley T. ; Zhao, Xuanhe ; Guilak, Farshid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5483-52ab1590bf88688626eeb5d083b55b2b5795bf9fcef6881ec2728a1211f024383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>3D weaving</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Cartilage</topic><topic>Fibers</topic><topic>Hydrogels</topic><topic>Interpenetrating networks</topic><topic>osteoarthritis</topic><topic>Scaffolds</topic><topic>Surgical implants</topic><topic>synthetic cartilage</topic><topic>tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, I-Chien</creatorcontrib><creatorcontrib>Moutos, Franklin T.</creatorcontrib><creatorcontrib>Estes, Bradley T.</creatorcontrib><creatorcontrib>Zhao, Xuanhe</creatorcontrib><creatorcontrib>Guilak, Farshid</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, I-Chien</au><au>Moutos, Franklin T.</au><au>Estes, Bradley T.</au><au>Zhao, Xuanhe</au><au>Guilak, Farshid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composite Three-Dimensional Woven Scaffolds with Interpenetrating Network Hydrogels to Create Functional Synthetic Articular Cartilage</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2013-12-17</date><risdate>2013</risdate><volume>23</volume><issue>47</issue><spage>5833</spage><epage>5839</epage><pages>5833-5839</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The development of synthetic biomaterials that possess mechanical properties mimicking those of native tissues remains an important challenge to the field of materials. In particular, articular cartilage is a complex nonlinear, viscoelastic, and anisotropic material that exhibits a very low coefficient of friction, allowing it to withstand millions of cycles of joint loading over decades of wear. Here, a three‐dimensionally woven fiber scaffold that is infiltrated with an interpenetrating network hydrogel can build a functional biomaterial that provides the load‐bearing and tribological properties of native cartilage. An interpenetrating dual‐network “tough‐gel” consisting of alginate and polyacrylamide was infused into a porous three‐dimensionally woven poly(ϵ‐caprolactone) fiber scaffold, providing a versatile fiber‐reinforced composite structure as a potential acellular or cell‐based replacement for cartilage repair. A three‐dimensionally woven fiber scaffold (left) shows significant reduction in surface roughness after being infused with an interpenetrating network (IPN) hydrogel consisting of alginate and polyacrylamide (right), as measured using an optical profiler. These fiber‐reinforced IPN scaffolds provide a versatile composite structure as a potential acellular or cell‐based replacement for tissue repair.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>24578679</pmid><doi>10.1002/adfm.201300483</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2013-12, Vol.23 (47), p.5833-5839
issn 1616-301X
1616-3028
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3933181
source Wiley Online Library All Journals
subjects 3D weaving
Biomaterials
Biomedical materials
Cartilage
Fibers
Hydrogels
Interpenetrating networks
osteoarthritis
Scaffolds
Surgical implants
synthetic cartilage
tissue engineering
title Composite Three-Dimensional Woven Scaffolds with Interpenetrating Network Hydrogels to Create Functional Synthetic Articular Cartilage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T10%3A42%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composite%20Three-Dimensional%20Woven%20Scaffolds%20with%20Interpenetrating%20Network%20Hydrogels%20to%20Create%20Functional%20Synthetic%20Articular%20Cartilage&rft.jtitle=Advanced%20functional%20materials&rft.au=Liao,%20I-Chien&rft.date=2013-12-17&rft.volume=23&rft.issue=47&rft.spage=5833&rft.epage=5839&rft.pages=5833-5839&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201300483&rft_dat=%3Cproquest_pubme%3E1826584367%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671596471&rft_id=info:pmid/24578679&rfr_iscdi=true